Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Analytical formulas of the angular width and propagation factor of a multi-Gaussian Schell-model vortex (MGSMV) beam through atmospheric turbulence are derived on the basis of the extended Huygens–Fresnel integral and second-order moments of Wigner distribution function. Evolution properties of the angular width and propagation factor of MGSMV beams propagating in atmospheric turbulence are investigated numerically. The results show that a multi-Gaussian Schell-model beam is more affected by atmospheric turbulence than a MGSMV beam, which will be useful for the practical application of the MGSMV beam.
Czasopismo
Rocznik
Tom
Strony
191--202
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- School of Physics and Optoelectronic Engineering, Xi’dian University, Xi’an 710071, China
autor
- School of Physics and Optoelectronic Engineering, Xi’dian University, Xi’an 710071, China
autor
- School of Physics and Optoelectronic Engineering, Xi’dian University, Xi’an 710071, China
Bibliografia
- [1] WESTPHAL V., HELL S.W., Nanoscale resolution in the focal plane of an optical microscope, Physical Review Letters 94(14), 2005, article ID 143903, DOI: 10.1103/PhysRevLett.94.143903.
- [2] PATERSON L., MACDONALD M.P., ARLT J., SIBBETT W., BRYANT P.E., DHOLAKIA K., Controlled rotation of optically trapped microscopic particles, Science 292(5518), 2001, pp. 912–914, DOI: 10.1126/science.1058591.
- [3] GRIER D.G., A revolution in optical manipulation, Nature 424, 2003, pp. 810–816, DOI: 10.1038/nature01935.
- [4] VERBEECK J., TIAN H., SCHATTSCHNEIDER P., Production and application of electron vortex beams, Nature467, 2010, pp. 301–304, DOI: 10.1038/nature09366.
- [5] CHEN M., MAZILU M., ARITA Y., WRIGHT E.M., DHOLAKIA K., Creating and probing of a perfect vortex in situ with an optically trapped particle, Optical Review 22(1), 2015, pp. 162–165, DOI: 10.1007/s10043-015-0031-7.
- [6] MAIR A., VAZIRI A., WEIHS G., ZEILINGER A., Entanglement of the orbital angular momentum states of photons, Nature 412, 2001, pp. 313–316, DOI: 10.1038/35085529.
- [7] LEONHARD N.D., SHATOKHIN V.N., BUCHLEITNER A., Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence, Physical Review A 91(1), 2015, article ID 012345, DOI: 10.1103/PhysRevA.91.012345.
- [8] PATERSON C., Atmospheric turbulence and orbital angular momentum of single photons for optical communication, Physical Review Letters 94(15), 2005, article ID 153901, DOI: 10.1103/PhysRevLett.94.153901.
- [9] WANG J., YANG J.-Y., FAZAL I.M., AHMED N., YAN Y., HUANG H., REN Y., YUE Y., DOLINAR S., TUR M.,WILLNER A.E., Terabit free-space data transmission employing orbital angular momentum multiplexing, Nature Photonics 6, 2012, pp. 488–496, DOI: 10.1038/nphoton.2012.138.
- [10] WANG J., Advances in communications using optical vortices, Photonics Research 4(5), 2016, pp. B14–B28, DOI: 10.1364/PRJ.4.000B14.
- [11] RODRIGO J.A., ALIEVA T., Evolution of coherence singularities of Schell-model beams, Optics Letters 40(15), 2015, pp. 3635–3638, DOI: 10.1364/OL.40.003635.
- [12] PEREZ-GARCIA B., YEPIZ A., HERNANDEZ-ARANDA R.I., FORBES A., SWARTZLANDER G.A., Digital generation of partially coherent vortex beams, Optics Letters 41(15), 2016, pp. 3471–3474, DOI: 10.1364/OL.41.003471.
- [13] GBUR G., TYSON R.K., Vortex beam propagation through atmospheric turbulence and topological charge conservation, Journal of the Optical Society of America A 25(1), 2008, pp. 225–230, DOI:10.1364/JOSAA.25.000225.
- [14] SINGH R.P., CHOWDHURY S.R., Noncanonical vortex transformation and propagation in a two-dimensional optical system, Journal of the Optical Society of America A 20(3), 2003, pp. 573–576, DOI:10.1364/JOSAA.20.000573.
- [15] ZHU J., ZHANG P., CHEN D., LIU R., ZHOU Y., WANG J., GAO H., LI F., Robust method to probe the topological charge of a Bessel beam by dynamic angular double slits, Applied Optics 57(7), 2018, pp. B39–B44, DOI: 10.1364/AO.57.000B39.
- [16] FU D., CHEN D., LIU R., WANG Y., GAO H., LI F., ZHANG P., Probing the topological charge of a vortex beam with dynamic angular double slits, Optics Letters 40(5), 2015, pp. 788–791, DOI: 10.1364/OL.40.000788.
- [17] ZHOU G., CHEN R., Wigner distribution function of Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system, Applied Physics B 107(1), 2012, pp. 183–193, DOI: 10.1007/s00340-012-4889-9.
- [18] ZHU K., LI S., TANG Y., YU Y., TANG H., Study on the propagation parameters of Bessel–Gaussian beams carrying optical vortices through atmospheric turbulence, Journal of the Optical Society of America A 29(3), 2012, pp. 251–257, DOI: 10.1364/JOSAA.29.000251.
- [19] LI J., WANG W., DUAN M., WEI J., Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams, Optics Express 24(18), 2016, pp. 20413–20423, DOI: 10.1364/OE.24.020413.
- [20] LI J., SUO Q., CHEN L., Analysis to beam quality of partially coherent flat-topped vortex beams propagating through atmospheric turbulence, Optik 127(23), 2016, pp. 11342–11348, DOI: 10.1016/j.ijleo.2016.09.031.
- [21] TANG M., ZHAO D., Propagation of multi-Gaussian Schell-model vortex beams in isotropic random media, Optics Express 23(25), 2015, pp. 32766–32776, DOI: 10.1364/OE.23.032766.
- [22] ZHANG Y., LIU L., ZHAO C., CAI Y., Multi-Gaussian Schell-model vortex beam, Physics Letters A 378(9), 2014, pp. 750–754, DOI: 10.1016/j.physleta.2013.12.039.
- [23] LI J., LÜ B., Composite coherence vortices in superimposed partially coherent vortex beams and their propagation through atmospheric turbulence, Journal of Optics A: Pure and Applied Optics 11(7), 2009, article ID 075401, DOI: 10.1088/1464-4258/11/7/075401.
- [24] DAN Y., ZHANG B., Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere, Optics Express 16(20), 2008, pp. 15563–15575, DOI: 10.1364/OE.16.015563.
- [25] XU H.-F., ZHANG Z., QU J., HUANG W., Propagation factors of cosine-Gaussian-correlated Schell -model beams in non-Kolmogorov turbulence, Optics Express 22(19), 2014, pp. 22479–22489, DOI:10.1364/OE.22.022479.
- [26] YUAN Y., CAI Y., EYYUBOĞLU H.T., BAYKAL Y., CHEN J., Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere, Optics and Lasers in Engineering 50(5), 2012, pp. 752–759, DOI: 10.1016/j.optlaseng.2011.12.003.
- [27] YUAN Y., CAI Y., QU J., EYYUBOĞLU H.T., BAYKAL Y., KOROTKOVA O., M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere, Optics Express 17(20), 2009, pp. 17344–17356, DOI: 10.1364/OE.17.017344.
- [28] LI J., WANG W., LAI Y., The kurtosis parameter of partially coherent controllable dark hollow beams in free space, Optica Applicata 44(4), 2014, pp. 533–543, DOI: 10.5277/oa140404.
- [29] HE X., LÜ B., Propagation of partially coherent flat-topped vortex beams through non-Kolmogorov atmospheric turbulence, Journal of the Optical Society of America A 28(9), 2011, pp. 1941–1948, DOI: 10.1364/JOSAA.28.001941.
- [30] ZHONG Y., CUI Z., SHI J., QU J., Propagation properties of partially coherent Laguerre–Gaussian beams in turbulent atmosphere, Optics & Laser Technology 43(4), 2011, pp. 741–747, DOI: 10.1016/j.optlastec.2010.07.015.
- [31] LI J., ZENG J., Dynamic evolution of coherent vortex dipole in atmospheric turbulence, Optics Communications 383, 2017, pp. 341–348, DOI: 10.1016/j.optcom.2016.09.031.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7daa9e86-237b-4dff-9941-3bd4e9c9d35c