PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical and chemical mechanisms of hydrophobicity of nanoparticle membranes (Mg+Al2O3)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Investigate the hydrophobic, superhydrophobic and hydrophilic properties of Alumina (Al2O3) and Magnesium (Mg) nanoparticles. Design/methodology/approach: This research was conducted by SEM-EDX analysis of Magnesium and Alumina nanoparticles, observation of gas bubbles when droplets of water contact with membrane surfaces, measurement of surface roughness and detection of Hydrogen gas production using Gas Chromatography. There are eleven compositions (Al2O3:Mg) membranes used in this study, namely: (0:100; 10:90; 20:80; 30:70; 40:60; 50:50; 60:40; 70:30; 80:20; 90:10; and 100:0). Findings: Successfully found an alloy membrane between Alumina (Al2O3) and Magnesium (Mg) nanoparticles in the composition of Mg:Al2O3 (0:100%) having Hydrophobic properties; Mg:Al2O3 (50:50%) has Superhydrophobic properties and Mg:Al2O3 (100:0%) has hydrophilic properties. Three conditions occur when H2O droplets come in contact with the membrane layer, namely: hydrophobic conditions when the trapped gas pressure is smaller than the droplet pressure. Superhydrophobic conditions when the trapped gas pressure is equal to the droplet pressure. Hydrophilic conditions occur when the trapped gas pressure is greater than the droplet pressure. Research limitations/implications: This research is limited to the hydrophobic nature of Nano Alumina (Al2O3) and Magnesium (Mg) membrane particles. Practical implications: Superhydrophobic properties are very suitable to be applied to membranes that are useful for destiny. Originality/value: The novelty of this study is to find the right mixture of nanoparticles of Alumina and Magnesium in a composition that is capable of creating hydrophobic, superhydrophobic and hydrophilic properties.
Rocznik
Strony
57--68
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering,Universitas Muhammadiyah Yogyakarta, Brawijaya street, Kasihan, Bantul, Yogyakarta, 55183, Indonesia
autor
  • Mechanical Engineering Department, Engineering Faculty, University Lambung Mangkurat, Jenderal Achmad Yani Street KM 35.5, Banjarbaru, South Kalimantan, 70714, Indonesia
autor
  • Mechanical Engineering Department, Engineering Faculty, University Brawijaya, Veteran street No. 16, Malang, East Java, 65145, Indonesia
Bibliografia
  • [1] A.V. Adamson, Physical Chemistry of Surfaces, Wiley, New York, 1990, DOI: https://doi.org/10.1080/01932699108913152.
  • [2] J.N. Israelachvili, Intermolecular and Surface Forces, Second Edition, Academic Press, London, 1992, DOI: https://doi.org/10.1080/01932699208943350.
  • [3] B. Bhushan, Principles and Applications of Tribology, Wiley, New York. 1999, DOI: http://dx.doi.org/10.1007/978-3-540-78425-8.
  • [4] B. Bhushan, Introduction to Tribology, Wiley, New York, 2002, DOI: https://doi.org/10.1115/1.1523360.
  • [5] B. Bhushan, Nanotribology and Nanomechanics – An Introduction, Second Edition, Springer-Verlag, Heidelberg, Germany, 2008, DOI: https://doi.org/10.1007/978-3-540-77608-60.
  • [6] M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surface: Friction, Superhydrophobicity, and Biomimetics, SpringerVerlag, Heidelberg, Germany, 2008, DOI: https://doi.org/10.1007/978-3-540-78425-8.
  • [7] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, SuperWater-Repellent Fractal Surfaces, Langmuir 12 (1996) 2125-2127, DOI: https://doi.org/10.1021/la950418o.
  • [8] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties, Langmuir 16/17 (2000) 7044-7047, DOI: https://doi.org/10.1021/la000155k.
  • [9] C. Cottin-Bizonne, J.L. Barrat, L. Bocquet, E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nature Materials 2/4 (2003) 237240, DOI: https://doi.org/10.1038/nmat857.
  • [10] R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, C.J. Brinker, Drag Reduction on a Patterned Superhydrophobic Surface, Physical Review Letters 97/4 (2006)c44504, DOI: https://doi.org/10.1038/s41598-017-16369-3.
  • [11] B. Bhushan, Biomimetics: Lessons from Nature – An Overview, Philosophical Transactions of the Royal Society A 367 (2009) 1445-1486, DOI: https://doi.org/10.1098/rsta.2009.0011.
  • [12] K. Koch, B. Bhushan, W. Barthlott, Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics, Progress in Materials Science 54/2 (2009) 137-178, DOI: https://doi.org/10.1016/j.pmatsci.2008.07.003.
  • [13] P. Roach, N.J. Shirtcliffe, M.I. Newton, Progess in superhydrophobic surface development, Soft Matter 4 (2008) 224-240, DOI: https://doi.org/10.1039/B712575P.
  • [14] E. Khalili, M. Sarafbidabad, Combination of laser patterning and nano PTFE sputtering for the creation a super-hydrophobic surface on 304 stainless steel in medical applications, Surfaces and Interfaces 8 (2017) 219-224, DOI: https://doi.org/10.1016/j.surfin.2017.06.008.
  • [15] K. Jeyasubramanian, G.S. Hikku, A.V.M. Preethi, V.S. Benitha, N. Selvakumar, Fabrication of water repelent cotton fabric by coating nano particle impregnated hydrophobic additives and its characterization, Journal of Industrial and Engineering Chemistry 37 (2016) 180-189, DOI: https://doi.org/10.1016/j.jiec.2016.03.023.
  • [16] H. Yan, X. Lu, C. Wu, X. Sun, W. Tang, Fabrication of a super-hydrophobic polyvinylidene fluoride hollow fiber membrane using a particle coating process, Journal of Membrane Science 533 (2017) 130-140, DOI: https://doi.org/10.1016/j.memsci.2017.03.033.
  • [17] Y. He, W.T. Sun, S.C. Wang, P.A.S. Reed, F.C. Walsh, An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties, Electrochimica Acta 245 (2017) 872-882, DOI: https://doi.org/10.1016/j.electacta.2017.05.166.
  • [18] Sh. Ammar, K. Ramesh, B. Vengadaesvaran, S. Ramesh, A.K. Arof, A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties, Electrochimica Acta 220 (2016) 417-426, DOI: https://doi.org/10.1016/j.electacta.2016.10.099.
  • [19] E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, Recent advances in designing superhydrophobic surfaces, Journal of Colloid and Interface Science 402 (2013) 1-18, DOI: https://doi.org/10.1016/j.jcis.2013.03.041.
  • [20] J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter 7 (2011) 9804-9828, DOI: https://doi.org/10.1039/C1SM05849E.
  • [21] R.J. Good, Contact angle, wetting, and adhesion: a critical review, Journal of Adhesion Science and Technology 6/12 (1992) 1269-1302, DOI: https://doi.org/10.1163/156856192X00629.
  • [22] Z. Xu, X. Huang, L. Wan, Surface Engineering of Polymer Membranes, Springer Berlin Heidelberg, New York, 2009.
  • [23] B. Wang, Y. Zhang, L. Shi, J. Li, Z. Guo, Advances in the theory of superhydrophobic surfaces, Journal of Materials Chemistry 22 (2012) 20112-20127, DOI: https://doi.org/10.1039/C2JM32780E.
  • [24] M. Nosonovsky, B. Bhushan, Roughness optimization for biomimetic superhydrophobic surfaces, Microsystems Technology 11/7 (2005) 535-549, DOI: https://doi.org/10.1007/s00542-005-0602-9.
  • [25] Y.C. Jung, B. Bhushan, Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity, Nanotechnology 17/19 (2006) 4970-4980, DOI: https://doi.org/10.1088/0957-4484/17/19/033.
  • [26] R.N. Wenzel, Resistance of Solid Surface to Wetting by Water, Industrial & Engineering Chemistry 28 (1936) 988-994, DOI: https://doi.org/10.1021/ie50320a024.
  • [27] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society 40 (1944) 546-551, DOI: https://doi.org/10.1039/TF9444000546.
  • [28] R. Subagyo, I.N.G. Wardana, A. Widodo, E. Siswanto, The mechanism of hydrogen bubble formation caused by the superhydrophobic characteristic of taro leaves, International Review of Mechanical Engineering (IREME) 11/2 (2017) 95-100, DOI: https://doi.org/10.15866/ireme.v11i2.10621.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aecb2c0f-706f-452e-bc24-9fa72f68c1fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.