Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Local wind conditions can vary strongly depending on the landmark and vegetation, as well as on the skyline of the buildings in an urban surrounding. Weather, season and time of day influence the yield of electric power. In order to promote the use of small wind turbines as an alternative to photovoltaic power generation, design optimization for location-optimized small wind turbines was carried out. In this work, we want to concentrate on vertical axis wind turbines. Experimental studies, as well as numerical simulations, have been conducted. On the one hand, bionically optimized core structures will be integrated and implemented in the hybrid material of the turbine blades. Several optimization attempts have been examined for single blades. Detailed simulative investigations with large eddy simulations improve the aerodynamic behaviour of the new rotor design. Finally, based on the results of the studies and investigations, a new rotor will be manufactured and tested experimentally in the wind tunnel. A comparison with the reference system from the first part of the paper shows the improvements and effectiveness of the measures and processes investigated.
Czasopismo
Rocznik
Tom
Strony
3--19
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
- University of Applied Sciences Saarbrücken (htw saar), Faculty of Economic Sciences, Campus Rotenbühl, Waldhausweg 14, 66123 Saarbrücken, Germany
autor
- University of Applied Sciences Saarbrücken (htw saar), Faculty of Economic Sciences, Campus Rotenbühl, Waldhausweg 14, 66123 Saarbrücken, Germany
autor
- University of Applied Sciences Saarbrücken (htw saar), Faculty of Economic Sciences, Campus Rotenbühl, Waldhausweg 14, 66123 Saarbrücken, Germany
Bibliografia
- [1] Lehser-Pfeffermann D., Häfele T., Rückert F., Griebsch J., Müller T., Joos F.: Location-optimized aerodynamic design of small wind turbines and lightweight implementation using additive hybrid material. Mech. Mech. Eng. 22(2018), 2437–445.
- [2] Rezaeiha A., Kalkman I., Montazeri H., Blocken B.: Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines. Energ. Convers. Manage. 149(2017), 616–630.
- [3] https://www.ansys.com/ (accessed 4 April 2021).
- [4] Lehser-Pfeffermann D., Häfele T., Lehmon D., Hamman A., Griebsch J., Rückert F.: Aerodynamically and structurally optimized rotor of a vertical axis small wind turbine for suburban areas. In: Proc. ICCE2019 – 8th Int. Conf. Exhib. on Clean Energy, 12-14 August, Montreal, Canada, 2019.
- [5] https://www.rhino3d.com/de/6/new/grasshopper/ (accessed 5 April 2021).
- [6] Lehser-Pfeffermann D.: Untersuchung des Strömungsverlaufes einer Rotorkonzeptstudie für vertikale Kleinwindkraftanlagen, PhD thesis, Helmut-Schmidt Univ., Hamburg 2021.
- [7] Lehser-Pfeffermann D., Theis D., Hamman A., Rückert F.: Investigation and evaluation of aerodynamic efficiency improvement measures for vertical axis small wind turbines. In: Proc. 6th Int. Conf. on Renewable and Non-Renewable Energy, Miami, May 20–21, 2019.
- [8] http://web.mit.edu/drela/Public/web/xfoil/ (accessed 15 March 2021).
- [9] MacPhee D., Beyene A.: Performance analysis of a small wind turbine equipped with flexible blades. Renew. Energ. 132(2019), 497–508,
- [10] Hoogedoorn E., Jacobs G., Beyene A.: Aero-elastic behavior of a flexible blade for wind turbine application: a 2d computational study. Energy 35(2010), 2, 778–785.
- [11] MacPhee D., BeyeneA.: Fluid-structure interaction of a morphing symmetrical wind turbine blade subjected to variable load. Int. J. Energ. Res. 37(2013), 1, 69–79.
- [12] M. Kerho, S. Hutcherson, R.F. Blackwelder, R.H. Liebeck: vortex generators used to control laminar separation bubbles. Int. J. Aircraft 30(1993), 3, 315–319.
- [13] Koehler R.: Wirbel und Schrauben in Scherströmungen. Elemente der Naturwissenschaft 20(1974), 8–25.
- [14] Taneda S.: Experimental investigation of the wakes behind cylinders and plates at low reynolds numbers. J. Phys. Soc. Japan 11(1956), 3, 302–307.
- [15] Benim A.C., Epple B., Krohmer B.: Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation, Prog. Comput. Fluid Dyn. 5(2005), 6, 345–361.
- [16] Ahmed A., Ibrar B., Lehser-Pfeffermann D., Theis D., Benim A., Rückert F., Joos F.: Investigation of wake flow and turbulence development behind small wind turbines. In: Proc. ICREN – 2019 Int. Conf. on Renewabl, Paris, 24–26 April, 2019.
- [17] Stasko T., Majkut M., Dykas S., Smołka K.: Selection of a numerical model to predict the flowin a fan with a cycloidal rotor. Arch. Thermodyn. 42(2021), 4, 3–15.
- [18] Marchewka E., Sobczak K., Reorowicz P., Obidowski S.D., Józwik K.: Application of overset mesh approach in the investigation of the Savonius wind turbines with rigid and deformable blades. Arch. Thermodyn. 42(2021), 4, 201–216.
- [19] Lipian M., Dobrev I., Massouh F., Jozwik K.: Small wind turbine augmentation: Numerical investigations of shrouded- and twin-rotor wind turbines. Energy 201(2020), 117588.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78be9a3c-0c13-4166-892d-f15cd109aebb