PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Leveraging generative Artificial Intelligence for enhancing the quality of product data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: In an era of digitalization and rapid e-commerce growth, the quality of product data has become a crucial factor for efficient logistics, online trade, and supply chain management. Accurate attributes-such as product name, brand, GTIN, and images-ensure reliable product identification. However, product data often contain errors that disrupt business processes. This study investigates the potential of generative artificial intelligence (GenAI) to improve product data quality. Methods: Generative AI models were analyzed for their potential role in validating product data. To minimize the risk of errors and hallucinations, a supportive validation approach was proposed, in which GenAI provides suggestions for data improvement but does not make automatic decisions. Results: The proposed approach demonstrated strong potential to improve product data quality, particularly in the areas of language validation, brand attribution, categorization, product naming, and image verification. Conclusions: Generative AI shows considerable promise for enhancing product data quality, particularly by automating and streamlining validation. The framework examined here effectively supported error detection and generated actionable suggestions for correction. With further development, such tools could significantly improve data management efficiency in e-commerce and logistics while promoting the standardization of product information management processes.
Czasopismo
Rocznik
Strony
317--326
Opis fizyczny
Bbliogr. 28 poz., fot., tab.
Twórcy
  • Poznan University of Technology, Faculty of Engineering Management, Poznań
  • Poland Łukasiewicz Research Network – Poznan Institute of Technology, Poznań, Poland
  • Poznan University of Technology, Faculty of Engineering Management, Poznań, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology, Poznań, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology, Poznań, Poland
Bibliografia
  • 1. Cao, J., 2023. E-Commerce Big data mining and analytics (1st ed.). Singapore: Springer Nature. https://doi.org/10.1007/978-981-99-3588-8
  • 2. Cao, M., Zhang, Q., 2011. Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of Operations Management, 29(3), 163–180. https://doi.org/10.1016/j.jom.2010.12.008
  • 3. Chehal, D., Gupta, P., Gulati, P., Gupta, T., 2023. Comparative study of missing value imputation techniques on e-commerce product ratings. Informatica, 47(3), Article 3. https://doi.org/10.31449/inf.v47i3.4156
  • 4. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. http://arxiv.org/abs/1810.04805
  • 5. Gerace, J., 2013. Understanding verification and validation of product model data in industry. Master’s thesis, Purdue University, West Lafayette, IN. Available from Internet: https://docs.lib.purdue.edu/cgttheses/18/. Accessed 2025-09-15.
  • 6. Haug, A., Zachariassen, F., Van Liempd, D., 2011. The costs of poor data quality. Journal of Industrial Engineering and Management, 4(2), 168–193. https://doi.org/10.3926/ jiem.2011.v4n2.p168-193
  • 7. Ilyin, D., Morozov, S., Semenov, V., Tarlapan, O., 2018. Management of complex product data using incremental semantic validation. In: M. Peruzzini, M. Pellicciari, C. Bil, J. Stjepandic, N. Wognum (Eds.), Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0. Advances in Transdisciplinary Engineering, vol. 7, pp. 956–965. Amsterdam: IOS Press. https://doi.org/10.3233/978-1-61499-898-3-956
  • 8. International Organization for Standardization, 2008. ISO/IEC 25012:2008(en) Software engineering—Software product quality requirements and evaluation (SQuaRE)—Data quality model. Available from Internet: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25012:ed-1:v1:en Accessed 2025-09-15.
  • 9. Jelonek, D., 2023. Environmental uncertainty and changes in digital innovation strategy. Procedia Computer Science, 225, 1468–1477. https://doi.org/10.1016/j.procs.2023.10.135
  • 10. Karpischek, S., Michahelles, F., Fleisch, E., 2014. Detecting incorrect product names in online sources for product master data. Electronic Markets, 24(2), 151–160. https://doi.org/10.1007/s12525-013-0136-4
  • 11. Lin, W.-C., Tsai, C.-F., 2020. Missing value imputation: A review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53(2), 1487–1509. https://doi.org/10.1007/s10462-019-09709-4
  • 12. Liu, A., Zhang, Y., Lu, H., Tsai, S.-B., Hsu, C.-F., Lee, C.-H., 2019. An innovative model to choose e-commerce suppliers. IEEE Access, 7, 53956–53976. https://doi.org/10.1109/ ACCESS.2019.2908393
  • 13. Liu, H., Li, C., Li, Y., Li, B., Zhang, Y., Shen, S., Lee, Y. J., 2024. Llava-next: Improved reasoning, OCR, and world knowledge. Available from Internet: https://llava-vl.github.io/blog/2024-01-30-llava-next/. Accessed 2025-09-15.
  • 14. M87 Labs, 2024. Vikhyatk/moondream2 Available from Internet: https://huggingface.co/vikhyatk/moondream2. Accessed 2025-09-15.
  • 15. Marsh, R., 2005. Drowning in dirty data? It’s time to sink or swim: A four-stage methodology for total data quality management. Journal of Database Marketing & Customer Strategy Management, 12(2), 105–112. https://doi.org/10.1057/ palgrave.dbm.3240247
  • 16. Niemir, M., Mrugalska, B., 2021. Basic product data in e-commerce: specifications and problems of data exchange. European Research Studies Journal, XXIV (Special Issue 5), 317–329. https://doi.org/10.35808/ersj/2735
  • 17. Niemir, M., Mrugalska, B., 2022a. Identifying the cognitive gap in the causes of product name ambiguity in e-commerce. Logforum, 18(3), 9. https://doi.org/10.17270/J.LOG.2022.738
  • 18. Niemir, M., Mrugalska, B., 2022b. Product Data Quality in e-Commerce: Key success factors and challenges. Production Management and Process Control, 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). https://doi.org/10.54941/ahfe1001626
  • 19. Niemir, M., Mrugalska, B., 2023. Monitoring and improvement of data quality in product catalogs using defined normalizers and validation patterns. In B. Mrugalska, T. Ahram, and W. Karwowski (Eds.), Human Factors in Engineering: Manufacturing Systems, Automation, and Interactions, 173–187, CRC Press. https://doi.org/10.1201/9781003383444
  • 20. Putri, W. K., Pujani, V., 2019. The influence of system quality, information quality, e-service quality and perceived value on Shopee consumer loyalty in Padang City. The International Technology Management Review, 8(1), 10–15. https://doi.org/10.2991/itmr.b.190417.002
  • 21. Qalati, S. A., Vela, E. G., Li, W., Dakhan, S. A., Hong Thuy, T. T., Merani, S. H., 2021. Effects of perceived service quality, website quality, and reputation on purchase intention: The mediating and moderating roles of trust and perceived risk in online shopping. Cogent Business & Management, 8(1), 1869363. https://doi.org/10.1080/ 23311975.2020.1869363
  • 22. Redyuk, S., Kaoudi, Z., Markl, V., Schelter, S., 2021. Automating data quality validation for dynamic data ingestion. EDBT, Query date: 2023-10-25 03:57:50. https://sergred.github.io/files/edbt.reds.pdf
  • 23. Russom, P., 2011. Big data analytics. TDWI Best Practices Report, Fourth Quarter, 19(4), 1–34.
  • 24. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., Lample, G., 2023. LLaMA: Open and efficient foundation language models. https://doi.org/10.48550/arXiv.2302.13971
  • 25. Wach, K., Ejdys, J., Duong, C. D., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., Ziemba, E., 2023. The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7–30. https://doi.org/10.15678/eber.2023.110201
  • 26. Wassel, B., 2024. Walmart used AI to crunch 850M product data points. Retail Dive. https://www.retaildive.com/news/walmart-generative-ai-product-data-points/724782/ Accessed 2025-09-15.
  • 27. Whang, S. E., Roh, Y., Song, H., Lee, J.-G., 2021. Data collection and quality challenges in deep learning: A data-centric AI perspective. The VLDB Journal, 1–23. https://doi.org/10.1007/s00778-022-00775-9
  • 28. Żuchowski, W., 2022. The smart warehouse trend: Actual level of technology availability. Logforum, 18(2), 7. https://doi.org/10.17270/J.LOG.2022.702
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99025798-23ba-4e33-a240-7d6600f2101c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.