PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and Experimental Validation of a Correlation Monitor Tool Based on the Endogenous Pulsed Neutron Source Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A correlation measuring tool for an endogenous pulsed neutron source experiment is developed in this work. Paroxysmal pulses generated by a bursts of neutron chains are detected by a 10-kbit embedded shift register with a time resolution of 100 ns. The system is implemented on a single reprogrammable device making it a compact, cost-effective instrument, easily adaptable for any case study. The system was verified experimentally in the Esfahan heavy-water zero power reactor (EHWZPR). The results obtained by the measuring tool are validated by the Feynman-α experiment, and a good agreement is seen within the boundaries of statistical uncertainties. The theory of the methods is briefly initiated in the text. Also, the system structure is described, the experimental results and their uncertainties are discussed, and neutron statistics in EHWZPR is examined experimentally.
Rocznik
Strony
441--461
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Reactor and Nuclear Safety Research School, Nuclear Science & Technology Research Institute (NSTRI), 143995-1113, Tehran, Iran
autor
  • Reactor and Nuclear Safety Research School, Nuclear Science & Technology Research Institute (NSTRI), 143995-1113, Tehran, Iran
autor
  • Sharif University of Technology, Azadi Avenue, 11365-11155, Tehran, Iran
  • Reactor and Nuclear Safety Research School, Nuclear Science & Technology Research Institute (NSTRI), 143995-1113, Tehran, Iran
Bibliografia
  • [1] Arkani, M., Hassanzadeh, M., Khakshournia, S. (2016). Calculation of six-group importance weighted delayed neutron fractions and prompt neutron lifetime of MTR research reactors based on Monte Carlo method. Progress in Nuclear Energy, (88), 352-363.
  • [2] Thie, J.A. (1963). Reactor Noise. New York: Rowman and Littlefield Inc.
  • [3] Uhrig, R.E. (1970). Random Noise Techniques in Nuclear Reactor Systems. New York: The Ronald Press Company.
  • [4] Williams, M.M.R. (1974). Random Process in Nuclear Reactors. Pergamon Press.
  • [5] Pázsit, I., Demaziére, C. (2010). Noise Techniques in Nuclear Systems. Handbook of Nuclear Engineering. D. Cacuci, Springer US, 1629-1737.
  • [6] Pázsit, I., Pál, L. (2008). Neutron fluctuations: A treatise on the physics on branching processes. Amsterdam: Elsevier.
  • [7] Pacilio, N. (1966). Neutron statistics techniques applied to the ROSPO reactor. Proc.s of the Karlsruhe EAES Symposium III, European Atomic Energy Society.
  • [8] Pacilio, N. (1967–1969). Survey of Advancements in Neutron-Statistics and Reactor-Kinetics Techniques at LFCR. CNEN-RT/FI, (70)29, 1967-1969.
  • [9] Orndroff, J.D. (1957). Prompt Neutron Periods of Metal Critical Assemblies. Nuclear Science and Engineering, (2), 450-460.
  • [10] Kitamura, Y., Matoba, M., Misavita, T., Unesaki, H., Shiroya, S. (1999). Reactor Noise Experiments by using Acquisition System for Time Series Data of Pulse Train. Nuclear Science and Technology, (36)8, 653-660.
  • [11] Arkani, M., Mataji-Kojouri, N. (2016). A Newly Designed Multichannel Scaling System: Validated by Feynman-α Experiment in EHWZPR. Nuclear Engineering and Design, (305) 213-221.
  • [12] Arkani, M. (2015). A high performance digital time interval spectrometer: an embedded, FPGA-based system with reduced dead time behaviour. Metrol. Meas. Syst., 22(4), 601-619.
  • [13] Arkani, M. (2015). Measurement of Tehran and Esfahan Research Reactors Kinetic Parameters Using Reactor Noise Diagnostic Methods. Amirkabir University of Technology (formerly called the Tehran Polytechnic), Nuclear Physics Department, Ph.D. Thesis.
  • [14] Arkani, M., Khalafi, H., Vosoughi, N. (2014). Development of an embedded FPGA-based data acquisition system dedicated to zero power reactor noise experiments. Metrol. Meas. Syst., 22(3), 433-446.
  • [15] Arkani, M., Khalafi, H., Vosoughi, N., Khakshournia, S. (2015). A FPGA based Time Analyser for Stochastic Methods in Experimental Physics. Instruments and Experimental Techniques, 58(3), 350–358.
  • [16] Pacilio, N., et al. (1971). A micrologic integrated circuit for monitoring correlation in pulse sequences. Nuclear Instruments and Methods, 92, 13-17.
  • [17] International Atomic Energy Agency. (1972). Kinetics and Noise Analysis of Zero-Power Reactors: An NPY-Project Report, Technical reports series No. 138, Vienna.
  • [18] Rajeev, K., et al. (2015). Development and testing of neutron pulse time stamping data acquisition system for neutron noise experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 770, 8-13.
  • [19] Cox, D.R. (1962). Renewal Theory. London: Methuen.
  • [20] Smith, W.L. (1957). On renewal theory, counter problems, and quasi-Poisson processes. Mathematical Proceedings of the Cambridge Philosophical Society, 53, 175-193.
  • [21] Hanus, R., et al. (2014). Velocity measurement of the liquid-solid flow in a vertical pipeline using gamma-ray absorption and weighted cross-correlation. Flow Measurement and Instrumentation, 40, 58-63.
  • [22] Zieliński, M., et al. (2009). Accumulated Jitter Measurement of Standard Clock Oscillators. Metrol. Meas. Syst., 16(2), 259-266.
  • [23] Chwaszczewski, S., et al. (1966). Improved Method for Prompt Neutron Period Measurement. Nuclear Science and Engineering, 25(2), 201-202.
  • [24] Choithramani, S.J. (1981). A comparative study of the shift register and conventional coincidence methods for neutron coincidence counting. Nuclear Instruments and Methods, 180, 189-193.
  • [25] Murata, Y. (1970). An instrument for analysis of neutron correlation with shift registers. Nuclear Instruments and Methods, 87, 261-272.
  • [26] Hazama, T. (2003). Practical correction of dead time effect in variance-to-mean ratio measurement. Annals of Nuclear Energy, 30(5), 615-631.
  • [27] Szappanos, D.G., Por, G., Do, Q.B. (1998). Feynman-alpha measurement in a 100kW research reactor. Progress in Nuclear Energy, 33(4), 439-455.
  • [28] Kloosterman, J.L., Rugama, Y. (2005). Feynman-α measurements on the fast critical zero-power reactor MASURCA. Progress in Nuclear Energy, 46(2), 111-125.
  • [29] Spriggs, G.D., Sakurai, T., Okajima, S. (1999). Rossi-α and βeff measurements in a fast critical assembly. Progress in Nuclear Energy, 35(2), 169-181.
  • [30] Szieberth, M., Klujber, G., Kloosterman, J.L., Haas, D.H. (2015). Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques. Annals of Nuclear Energy, 75, 146-157.
  • [31] Garelis, E., Jr. Russell, J.L. (1963). Theory of pulsed neutron source measurements. Nuclear Science and Engineering, 16(3), 263-270.
  • [32] Arkani, M., Raisali, G. (2015). Measurement of dead time by time interval distribution method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 774, 151-158.
  • [33] Misawa, T., Shiroya, S., Kanda, K. (1990). Measurement of prompt neutron decay constant and large subcriticality by the Feynman-α method. Nuclear Science and Engineering, 104(1), 53-65.
  • [34] Keiichi, S. (1979). Source papers in reactor noise. Progress in Nuclear Energy, 3(3), 157-218.
  • [35] NIOS II Software Developer’s Handbook Version 11.1, ALTERA Corporation, 2011.
  • [36] AEOI, Safety analysis report for Esfahan Heavy Water Zero Power Reactor (EHWZPR), 2013.
  • [37] Yasuda, H. (1972). Some Remarks on the Endogenous Pulsed Source Technique in Reactor Noise Analysis. Nuclear Science and Technology, 9(8), 501-503.
  • [38] Mathworks. (2014). MATLAB Reference Guide. The Math Works Inc.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04906906-dc17-4262-bca5-2dbeb5a46f7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.