PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applications of the fractional Sturm-Liouville difference problem to the fractional diffusion difference equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional operators in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues and corresponding eigenfunctions of the Sturm-Liouville problem, we show that solutions of fractional diffusion difference equations exist and are given by a finite series.
Rocznik
Strony
349--359
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
  • Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
  • Institute of Mathematical Economics, SGH Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland
  • Faculty of Computer Science, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • [1] Abdeljawad, T. (2011). On Riemann and Caputo fractional differences, Computers and Mathematics with Applications 62(3): 1602-1611.
  • [2] Almeida, R., Malinowska, A.B., Morgado, M.L. and Odzijewicz, T. (2017). Variational methods for the solutions of fractional discrete/continuous Sturm-Liouville problems, Journal of Mechanics of Materials and Structures 12(1): 3-21.
  • [3] Atici, F. and Eloe, P.W. (2009). Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society 137(3): 981-989.
  • [4] Bayrak, M.A., Demir, A. and Ozbilge, E. (2020). Numerical solution of fractional diffusion equation by Chebyshev collocation method and residual power series method, Alexandria Engineering Journal 59(6): 4709-4717.
  • [5] Ciesielski, M., Klimek, M. and Blaszczyk, T. (2017). The fractional Sturm-Liouville problem-numerical approximation and application in fractional diffusion, Journal of Computational and Applied Mathematics 317(6): 573-588.
  • [6] Cresson, J., Jiménez, F. and Ober-Blobaum, S. (2021). Modelling of the convection-diffusion equation through fractional restricted calculus of variations, IFAC Papers Online 54(9): 482-487.
  • [7] D’Ovidio, M. (2012). From Sturm-Liouville problems to fractional anomalous diffusion, Stochastic Processes and Their Applications 122(10): 3513-3544.
  • [8] Goodrich, C. and Peterson, A.C. (2015). Discrete Fractional Calculus, Springer, Cham.
  • [9] Hanert, E. and Piret, C. (2012). Numerical solution of the space-time fractional diffusion equation: Alternatives to finite differences, Proceedings of the 5th Symposium on Fractional Differentiation and Its Applications, Hohai, China.
  • [10] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer, Berlin/Heidelberg.
  • [11] Kaczorek, T. (2018). Stability of interval positive fractional discrete-time linear systems, International Journal of Applied Mathematics and Computer Science 28(3): 451-456, DOI: 10.2478/amcs-2018-0034.
  • [12] Kaczorek, T. (2019). Positivity of fractional descriptor linear discrete-time systems, International Journal of Applied Mathematics and Computer Science 29(2): 305-310, DOI: 10.2478/amcs-2019-0022.
  • [13] Klimek, M., Malinowska, A. B. and Odzijewicz, T. (2016). Applications of the Sturm-Liouville problem to the space-time fractional diffusion in a finite domain, Fractional Calculus and Applied Analysis 19(2): 516-550.
  • [14] Lin, Y. and Xu, C. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation, Journal of Computational Physics 225(2): 1533-1552.
  • [15] Meerschaert, M.M. (2011). Fractional calculus, anomalous diffusion, and probability, in J. Klafter et al. (Eds), Fractional Dynamics: Recent Advances, World Scientific Publishing, Hackensack, pp. 265-284.
  • [16] Meerschaert, M.M. and Tadjeran, C. (2004). Finite difference approximations for fractional advection-diffusion flow equations, Journal of Computational and Applied Mathematics 172(1): 65-77.
  • [17] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1-77.
  • [18] Miller, K.S. and Ross, B. (1989). Fractional difference calculus, in H.M Srivastava and S. Owa (Eds), Univalent Functions, Fractional Calculus, and Their Application, Ellis Horwood, Chichester, pp. 139-152.
  • [19] Mozyrska, D. and Girejko, E. (2013). Overview of fractional h-difference operators, in A. Almeida et al. (Eds), Operator Theory: Advances and Applications, Springer, Basel, pp. 253-268.
  • [20] Mozyrska, D., Girejko, E. and Wyrwas, M. (2013). Comparison of h-difference fractional operators, in W. Mitkowski et al. (Eds), Advances in the Theory of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 257, Springer, Heidelberg, pp. 192-198.
  • [21] Mozyrska, D. and Wyrwas, M. (2015). The Z-transform method and Delta type fractional difference operators, Discrete Dynamics in Nature and Society 2015, Article ID: 852734, DOI: 10.1155/2015/852734.
  • [22] Ostalczyk, P. (2008). Outline of Fractional-Order Differential-Integral Calculus: Theory and Applications in Automatic Control, Łódź University of Technology Press, Łódź, (in Polish).
  • [23] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science 22(3): 533-538, DOI: 10.2478/v10006-012-0040-7.
  • [24] Ostalczyk, P. (2015). Discrete Fractional Calculus: Applications in Control and Image Processing, World Scientific Publishing, Singapore.
  • [25] Płociniczak, L. (2019). Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting, Communications in Nonlinear Science and Numerical Simulation 76(9): 66-70.
  • [26] Płociniczak, L. and Świtała (2022). Numerical scheme for Erdélyi-Kober fractional diffusion equation using Galerkin-Hermite method, Fractional Calculus and Applied Analysis 25(4): 1651-1687.
  • [27] Płociniczak, L. and Świtała, M. (2018). Existence and uniqueness results for a time-fractional nonlinear diffusion equation, Journal of Mathematical Analysis and Applications 462(2): 1425-1434.
  • [28] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  • [29] Saber Elaydi, S. (2005). An Introduction to Difference Equations, Springer, New York.
  • [30] Woringer, M., Izeddin, I., Favard, C. and Berry, H. (2020). Anomalous subdiffusion in living cells: Bridging the gap between experiments and realistic models through collaborative challenges, Frontiers in Physics 8(134): 1-9.
  • [31] Wu, G.C., Baleanu, D., Zeng, S.D. and Deng, Z.G. (2015). Discrete fractional diffusion equation, Nonlinear Dynamics 80(1-2): 281-286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3520a62-2c52-4d4d-abc6-6a8c23e74786
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.