PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and tribological characterization of semi-metallic brake pads for automotive applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Semi-metallic brake pads are quite a good choice for performance-driven automotive industries, because of improved braking performance in a more comprehensive range of temperatures. In this study, a semi-metallic brake pad is fabricated through a powder metallurgy processing technique with two compositions of powders with a different weight ratio of Copper (Cu), Iron (Fe), flash, Aluminum oxide (Al2O3), Barium sulfate (BaSO4), Phenolic resin, Low-Density Polyethylene (LDPE), Graphite for automotive application. A well-distributed composition was indicated by the microstructure, which exhibited a uniform dispersion of hard particles throughout the matrix. BP-20Cu-20Fe specimen exhibited a high hardness value of 171Hv. Under higher loads of 70 N, the specimen BP-20Cu-20Fe showed excellent wear resistance, with a low wear rate of 1.072×10-6 g/Nm. On the other hand, specimen BP-20Cu-20Fe showed a notable 35% increase in friction coefficient when the load was increased from 30 N to 70 N.The surface morphology, elemental distribution, and worn surface features and characteristics are examined using advanced instrumental techniques.
Słowa kluczowe
Rocznik
Strony
5--25
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
Bibliografia
  • [1] Akramifard H.R., Ghasemi Z.: Friction and Wear Properties of a New Semi-Metallic Brake Pad According to SAE J 661: A Case Study in PARSLENT Complex (Iran). International Journal of New Technology and Research. 2016, 2(3), 263573.
  • [2] Almaslow A., Ghazali M., Talib R., Ratnam C., Azhari C.: Effects of epoxidized natural rubber–alumina nanoparticles (ENRAN) composites in semi-metallic brake friction materials. Wear. 2013, 302(1–2),1392–1396, DOI: 10.1016/j.wear.2013.01.033.
  • [3] Balaji M.S., Kani K.: Thermal and fade aspects of a non asbestos semi metallic disc brake pad formulation with two different resins. Advanced materials research. 2013, 622, 1559–1563, DOI: 10.4028/www.scientific.net/AMR.622-623.1559.
  • [4] Gudmand-Høyer L., Bach A., Nielsen G.T., Morgen P.: Tribological properties of automotive disc brakes with solid lubricants. Wear. 1999, 232(2), 168–175, DOI: 10.1016/S0043-1648(99)00142-8.
  • [5] Gultekin D., Uysal M., Aslan S., Alaf M., Gule, M., Akbulut H.: The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system. Wear. 2010, 270(1–2), 73–82, DOI: 10.1016/j.wear.2010.09.001.
  • [6] Handa Y., Kato T.: Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribology Transactions. 1996, 39(2), 346–353, DOI:10.1080/10402009608983537.
  • [7] Hu B.: Roles of iron metal powders in semi-metallic friction materials. Seventh International Technical Exchange and Products Exhibition on Friction Materials. Wuhan, China, June 16-18 2005.
  • [8] Hussain S., Abdul Hamid M., Mat Lazim A., Abu Bakar A.: Brake wear particle size and shape analysis of non-asbestos organic (NAO) and semi metallic brake pad. Jurnal Teknologi, 2014, 71(2), DOI:10.11113/jt.v71.3731.
  • [9] Jaafar T.R., Selamat M.S., Kasiran R.: Selection of best formulation for semi-metallic brake friction materials development. Powder metallurgy. 2012, 1–30, DOI: 10.5772/33909.
  • [10] Kachhap R.K., Satapathy B.K.: Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials. Materials & Design (1980-2015). 2014, 56,368–378, DOI: 10.1016/j.matdes.2013.11.006.
  • [11] Kchaou M., Sellami A., Elleuch R., Singh H.: Friction characteristics of a brake friction material under different braking conditions. Materials & Design (1980-2015). 2013, 52, 533–540, DOI: 10.1016/j.matdes.2013.05.015.
  • [12] Keshav M.G., Hemchandran C., Dharsan B., Pradhin K., Vignesh R.V., Govindaraju M.: Manufacturing of continuous fiber reinforced sintered brake pad and friction material. Materials Today: Proceedings. 2021, 46, 4493–4496, DOI: 10.1016/j.matpr.2020.09.686.
  • [13] Kukutschová J., Roubíček V., Mašláň M., Jančík D., Slovák V., Malachová, K., et al.: Wear performance and wear debris of semimetallic automotive brake materials. Wear. 2010, 268(1–2), 86–93, DOI: 10.1016/j.wear.2009.06.039.
  • [14] Kumar M., Bijwe J.: NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear. 2010, 269(11–12), 826–837, DOI: 10.1016/j.wear.2010.08.011.
  • [15] Kumar S., Ghosh S.K.: Porosity and tribological performance analysis on new developed metal matrix composite for brake pad materials. Journal of Manufacturing Processes. 2020, 59, 186–204, DOI:10.1016/j.jmapro.2020.09.053.
  • [16] Matějka V., Lu Y., Fan Y., Kratošová G., Lešková J.: Effects of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation. Wear,2008, 265(7–8), 1121–1128, DOI:10.1016/j.wear.2008.03.006.
  • [17] Matějka V., Perricone G., Vlček J., Olofsson U., Wahlström J.: Airborne wear particle emissions produced during the dyno bench tests with a slag containing semi-metallic brake pads. Atmosphere. 2020, 11(11), 1220, DOI: 10.3390/atmos11111220.
  • [18] Mohanty S., Chugh Y.: Development of fly ash-based automotive brake lining. Tribology International. 2007, 40(7), 1217–1224, DOI: 10.1016/j.triboint.2007.01.005.
  • [19] Österle W., Griepentrog M., Gross T., Urban I.: Chemical and microstructural changes induced by friction and wear of brakes. Wear. 2001, 250–251(Part 2), 1469–1476, DOI: 10.1016/S0043-1648(01)00785-2.
  • [20] Österle W., Urban I.: Friction layers and friction films on PMC brake pads. Wear. 2004, 257(1–2),215–226, DOI: 10.1016/j.wear.2003.12.017.
  • [21] Parikh H.H., Gohil P.P.: Tribology of fiber reinforced polymer matrix composites—A review. Journal of Reinforced Plastics and Composites. 2015, 34(16), 1340–1346, DOI: 10.1177/0731684415591199.
  • [22] Pinca-Bretotean C., Josan A., Birtok-Băneasă C.: Laboratory testing of brake pads made of organic materials intended for small and medium vehicles. IOP conference series: materials science and engineering. 2018, DOI: 10.1088/1757-899X/393/1/012029.
  • [23] Rajan R., Tyagi Y., Das A., Kumar P., Patel S.K.: Development and analysis of friction characteristics of coir fiber added organic brake pad composite. Materials Today: Proceedings. 2022, 62, 6077–6082, DOI: 10.1016/j.matpr.2022.04.1011.
  • [24] Rhee S.: Brake wear. MFPG, Product Durability and Life. Proceedings of the 27th Meeting of the Mechanical Failures Prevention Group, Held at the National Bureau of Standards, Gaithersburg, Maryland, 1977, 1–3.
  • [25] Tang C.-F., Lu Y.: Combinatorial screening of ingredients for steel wool based semimetallic and aramid pulp based nonasbestos organic brake materials. Journal of reinforced plastics and composites. 2004, 23(1), 51–63, DOI: 10.1177/0731684044028701.
  • [26] Tokala V.N.B., Kanneganti C.A., Kesana N.: Comparative Study on Dynamometer Performance Evaluation of Fly Ash Containing Organic and Semi-Metallic Motorcycle Disc Brake Pads. International Journal of Mechanical and Production Engineering Research and Development. 2018, 8(3), 227–234, DOI: 10.24247/ijmperdjun201826.
  • [27] Xiao Y., Cheng Y., Shen M., Yao P., Du J., Ji D., et al.: Friction and wear behavior of copper metal matrix composites at temperatures up to 800 C. Journal of Materials Research and Technology. 2022, 19, 2050–2062, DOI: 10.1016/j.jmrt.2022.05.192.
  • [28] Xiao Y., Zhang Z., Yao P., Fan K., Zhou H., Gong T., et al.: Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribology International. 2018, 119, 585–592, DOI: 10.1016/j.triboint.2017.11.038.
  • [29] Yu J., He J., Ya C.: Preparation of phenolic resin/organized expanded vermiculite nanocomposite and its application in brake pad. Journal of Applied Polymer Science. 2011, 119(1), 275–281, DOI: 10.1002/app.32557.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a86fa5f-0caa-402c-865e-121dc753b329
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.