Identyfikatory
Warianty tytułu
Does drinking water have to be chemically disinfected?
Języki publikacji
Abstrakty
Rozwój wiedzy w dziedzinie technologii oczyszczania wody pozwala na takie przygotowanie wody przed jej dystrybucją, że nie jest konieczne stosowanie chemicznej dezynfekcji. Zakłady wodociągowe w Polsce poniosły olbrzymie nakłady finansowe na zmiany technologii oczyszczania, aby sprostać zwiększonym wymaganiom jakościowym wody przeznaczonej do spożycia. Podstawowym celem zakładu wodociągowego jest dostarczenie wody bezpiecznej mikrobiologicznie, przy czym bezpieczeństwo to w dużych sieciach wodociągowych osiąga się dzięki stosowaniu chemicznej dezynfekcji wody za pomocą chloru, dwutlenku chloru lub chloraminy. Obecność chemicznych środków dezynfekcyjnych w wodzie jest często społecznie trudna do akceptacji ze względu na wrażenia organoleptyczne, a także z uwagi na powstawanie tzw. ubocznych produktów dezynfekcji. Coraz lepsze zrozumienie procesów chemicznych i biologicznych zachodzących podczas oczyszczania wody oraz jej dystrybucji powoduje, że nowoczesna technologia może zapewnić konsumentom wodę wodociągową bezpieczną mikrobiologicznie, a jednocześnie pozbawioną pozostałości chemicznych środków dezynfekcyjnych. W ten sposób pracują wodociągi i sieci dystrybucyjne w Berlinie, Zurychu, Amsterdamie, Rotterdamie i innych miastach zachodniej Europy. W artykule postawiono pytanie, jakie warunki należy spełnić, aby chemiczna dezynfekcja wody nie była konieczna. W tym celu omówiono warunki zapewniające wysoką stabilność biologiczną wody, co w konsekwencji umożliwi zaniechanie jej dezynfekcji chemicznej.
Knowledge development in the field of water treatment enables preparation of water prior to its distribution in such a way that chemical disinfection is no longer required. Public water systems in Poland incurred huge expenses for changes in water treatment technology in order to fulfill increasing quality requirements regarding potable water. The basic aim of public water system is to provide microbially safe water for human consumption. This safety in large water supply networks is obtained thanks to chemical disinfection with chlorine, chlorine dioxide or chloramine. Presence of chemical disinfectants in water is often socially difficult to accept due to their negative organoleptic properties as well as formation of the so called byproducts of disinfection. Continuous progress in understanding of chemical and biological processes taking place during water treatment and its distribution enables modern technology to provide consumers with microbially safe drinking water, devoid of chemical disinfectant residues. This is how waterworks and distribution networks operate in Berlin, Zurich, Amsterdam, Rotterdam and other cities of Western Europe. The question asked in this paper referred to the conditions necessary to be fulfilled for chemical water disinfection not to be required. For this purpose, conditions ensuring high biological water stability, and as a result allowing chemical disinfection to be abandoned, were discussed.
Czasopismo
Rocznik
Tom
Strony
3--8
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- Miejskie Przedsiębiorstwo Wodociągów i Kanalizacji w m.st. Warszawie SA, pl. Sokratesa Starynkiewicza 5, 02-015 Warszawa
autor
- Uniwersytet im. Adama Mickiewicza, Wydział Chemii, Zakład Technologii Uzdatniania Wody, ul. Umultowska 89b, 61-114 Poznań
Bibliografia
- 1. J. NAWROCKI: Uboczne produkty utleniania i dezynfekcji wody – doświadczenia ostatnich 30 lat (By-products of water disinfection: Summary of 30 years’ experience). Ochrona Środowiska 2005, vol. 27, nr 4, ss. 3–12.
- 2. S. REGLI, P. BERGER, B. MACLER, C. HAAS: Proposed decision tree for management of risk in drinking water: Consideration for health and socioeconomic factors. In: G.F. CRAM [Ed.]: Safety of Water Disinfection: Balancing Chemical and Microbial Risk, ILSI Press, Washington DC 1993.
- 3. D. van der KOOIJ, J.H.M. van LIVERLOO, J. SCHELLART, P. HEIMSTRA: Maintaining quality without a disinfectant residual. Journal American Water Works Association 1999, Vol. 91, No. 1, pp. 55–64.
- 4. D. van der KOOIJ, A. VISSER, W.A.M. HIJNEN: Determining the concentration of easily assimilable organic carbon in drinking water. Journal American Water Works Association 1982, Vol. 74, No. 10, pp. 540–545.
- 5. B. KOŁWZAN: Analiza zjawiska biofilmu – warunki jego powstawania i funkcjonowania (Analysis of biofilms – their formation and functioning). Ochrona Środowiska 2011, vol. 33, nr 4, ss. 3–14.
- 6. M. ŚWIDERSKA-BRÓŻ: Skutki obecności biofilmu w systemach dystrybucji wody przeznaczonej do spożycia przez ludzi (Threats associated with the presence of biofilm in drinking water distribution systems). Ochrona Środowiska 2012, vol. 34, nr 1, ss. 9–14.
- 7. B. HAMBSCH: Distributing groundwater without a disinfectant residual. Journal American Water Works Association 1999, Vol. 91, No. 1, pp. 81–85.
- 8. P. WERNER, B. HAMBSCH: Investigations on the growth of bacteria in drinking water. Water Supply 1986, Vol. 4, No. 4, pp. 227–232.
- 9. D. van der KOOIJ, H. VEENENDAAL, W.J.H. SCHEFFER: Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Research 2005, Vol. 39, No. 13, pp. 2789–2798.
- 10. D. van der KOOIJ, J.H.M. van LIEVERLOO, P. GALE, G. STANFIELD: Distributing Drinking Water with a Low or Zero Disinfectant Residual, Operational and Biological Aspect. UKWIR, London 2003.
- 11. D. van der KOOIJ, J.H.M. van LIEVERLOO, J. SCHELLART, P. HIEMSTRA: Maintaining quality without a disinfectant residual. Journal American Water Works Association 1999, Vol. 91, No. 1, pp. 55–64.
- 12. P.W.M.H. SMEETS, G.J. MEDEMA, J.C. van DIJK: Dutch secret: How to provide safe drinking water without chlorine in the Netherlands. Drinking Water Engineering and Science 2009, No. 2, pp.n1–14.
- 13. M.W. LeCHEVALIER: The case for maintaining a disinfectant residual. Journal American Water Works Association 1999, Vol. 91, No. 1, pp. 86–94.
- 14. C.N. HAAS: Benefits of using a disinfectant residual. Journal American Water Works Association 1999, Vol. 91, No. 1, pp. 65–69.
- 15. J. NAWROCKI [red.]: Uzdatnianie wody. Procesy fizyczne, chemiczne i biologiczne. Wydawnictwo Naukowe UAM – Wydawnictwo Naukowe PWN, Warszawa 2010.
- 16. S.C. MORTON, Y. ZHANG, M.A. EDWARDS: Implications of nutrient release from iron metal for microbial regrowth in water distribution systems. Water Research 2005 Vol. 39, No. 13, pp. 2883–2892.
- 17. C.J. VOLK, M. LeCHEVALLIER: Assessing biodegradable organic matter. Journal American Water Works Association 2000, Vol. 92, No. 5, pp. 64–76.
- 18. C.J. VOLK, M.W. LeCHEVALLIER: Effects of conventional treatment on AOC and BDOC levels. Journal American Water Works Association 2002, Vol. 94, No. 6, pp. 112–123.
- 19. M.M. BAZRI, B.BARBEAU, M.MOHSENI: Impact of UV/H2O2 advanced oxidation treatment on molecular weight distribution of NOM and biostability of water. Water Research 2012, Vol. 46, No. 16, pp. 5297–5304.
- 20. Y. OHKOUCHI, B.T. LY, S. ISHIKAWA, Y. AOKI, S.ECHIGO, S. ITOH: A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water. Environmental Technology 2011, Vol. 32, No. 14, pp. 1605–613.
- 21. L.J. HEM, H. EFRAIMSEN: Assimilable organic carbon in molecular weight fractions of natural organic matter. Water Research 2001, Vol. 35, No. 4, pp. 1106–1110.
- 22. U. RACZYK-STANISŁAWIAK, J. ŚWIETLIK, A. DĄBROWSKA, J. NAWROCKI: Biodegradability of organic by-products after natural organic matter oxidation with ClO2 – case study. Water Research 2004, Vol. 38, No. 4, pp. 1044–1054.
- 23. I. KOZYATNYK, J. ŚWIETLIK, U. RACZYK-STANISŁAWIAK, N. KLYMENKO, J. NAWROCKI: Influence of oxidation on fulvic acids composition and biodegradability. Chemosphere 2013, Vol. 92, No. 10, pp. 1335–1342.
- 24. J. NAWROCKI, J. ŚWIETLIK, U. RACZYK-STANISŁAWIAK, A. DĄBROWSKA, S. BIŁOZOR, W. ILECKI: Influence of the ozonation’s conditions on the aldehyde and carboxylic acid formation. Ozone Science & Engeneering 2003, No. 25, pp. 53–62.
- 25. C.J. VOLK: Biodegradable organic matter measurement and bacterial regrowth in potable water. Methods in Enzymology 2001, Vol. 337, pp. 144–170.
- 26. M. POLANSKA, K. HUYSMAN, C. van KEER: Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water Research 2005, Vol. 39, No. 11, pp. 2259–2266.
- 27. F. HAMMES, C. BERGER, O. KÖSTER, T. EGLI: Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. Journal of Water Supply: Research and Technology – AQUA 2010, Vol. 59, No. 1, pp. 31–40.
- 28. M.W. LeCHEVALLIER, W. SCHULZ, R.G. LEE: Bacterial nutrients in drinking water. Applied and Environmental Microbiology 1991, No. 57, pp. 857–862.
- 29. D. van der KOOIJ: Biological stability: A multidimensional quality aspect of treated water. Water, Air and Soil Pollution 2000, Vol. 123, pp. 25–34.
- 30. M. PREVOST, P. LAURENT, P. SERVAIS, J.-C. JORET: Biodegradable Organic Matter in Drinking Water Treatment and Distribution. AWWA, 2005.
- 31. K. LAUTENSCHLAGER, C. HWANG, W.T. LIU, N. BOON, O. KÖSTER, H. VROUWENVELDER, T. EGLI, F. HAMMES: A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Research 2013, Vol. 47, No. 9, pp. 3015–3025.
- 32. W. SUN, W. LIU, L. CUI, L. LIU: Impact of AOC and chlorine residual on regrowth of microbes in a model distribution system receiving UV-treated potable water. Journal of Water Supply: Research and Technology – AQUA 2012, Vol. 61, No. 6, pp. 372–380.
- 33. Y. OHKOUCHI, B.T. LY, S. ISHIKAWA, Y. KAWANO, S. ITOH: Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual. Environmental Monitoring and Assessment 2013, Vol. 185, No. 2, pp. 1427–1436.
- 34. I.T. MIETTINEN, T. VARTIAINEN, P.J. MARTIKAINEN: Microbial growth and assimilable organic carbon in Finnish drinking waters. Water Science Technology 1997a. Vol. 35, No. 11–12, pp. 301–306.
- 35. I.T. MIETTINEN, T. VARTIAINEN, P.J. MARTIKAINEN: Phosphorus and bacterial growth in drinking water. Applied and Environmental Microbiology 1997b, Vol. 63, No. 8, pp. 3242–3245.
- 36. M.J. LEHTOLA, I.T. MIETTINEN, T. VARTIAINEN, T. MYLLYKANGAS, P.J. MARTIKAINEN: Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Research 2001, Vol. 35, No. 7, pp. 1635–1640.
- 37. M. POLANSKA, K. HUYSMAN, C. van KEER: Investigation of microbially available phosphorus (MAP) in flemish drinking water. Water Research 2005, Vol. 39, No. 11, pp. 2267–2272.
- 38. M.J. LEHTOLA, T. JUHNA, I.T. MIETTINEN, T. VARTIAINEN, P.J. MARTIKAINEN: Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Journal of Industrial Microbiology and Biotechnology 2004, Vol. 31, No. 11, pp. 489–494.
- 39. L. CHEN, R.B. JIA, L. LI: Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water. Environmental Sciences: Processes and Impacts 2013, Vol. 15, No. 7, pp. 1332–1340.
- 40. D. van der KOOIJ, H.R. VEENENDAAL, C. BAARS-LORIST, D.W. van der KLIFT, Y.C. DROST: Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Research 1995, Vol. 29, No. 7, pp. 1655–1662.
- 41. P.W.J.J. van der WIELEN, D. van der KOOIJ: Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water Research 2010, Vol. 44, No. 17, pp. 4860–4867.
- 42. J. NAWROCKI, U. RACZYK-STANISŁAWIAK, J. ŚWIETLIK, A. OLEJNIK, M.J. SROKA: Corrosion in a distribution system: Steady water and its composition. Water Research 2010, Vol. 44, No. 6, pp. 1863–1872.
- 43. J.C. LOU, B.H. CHEN, T.W. CHANG, H.W. YANG, J.Y. HAN: Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system. Environmental Monitoring and Assessment 2011, Vol. 178, No. 1–4, pp. 73–83.
- 44. K.H. CARLSON; G.L. AMY: BOM removal during biofiltration; Journal American Water Works Association 1998, Vol. 90, No. 12, pp. 42–52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c81b0b14-a554-4e08-9973-de41c9597bb5