PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of thin-walled beams with variable monosymmetric cross section by means of Legendre polynomials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with the vibrations of a nonprismatic thin-walled beam with an open cross section and any geometrical parameters. The thin-walled beam model presented in this article was described using the membrane shell theory, whilst the equations were derived based on the Vlasov theory assumptions. The model is a generalisation of the model presented by Wilde (1968) in ‘The torsion of thin-walled bars with variable cross-section’, Archives of Mechanics, 4, 20, pp. 431–443. The Hamilton principle was used to derive equations describing the vibrations of the beam. The equations were derived relative to an arbitrary rectilinear reference axis, taking into account the curving of the beam axis and the axis formed by the shear centres of the beam cross sections. In most works known to the present authors, the equations describing the nonprismatic thin-walled beam vibration problem do not take into account the effects stemming from the curving (the inclination of the walls of the thin-walledcross section towards to the beam axis) of the analysed systems. The recurrence algorithm described in Lewanowicz’s work (1976) ‘Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series’, Applicationes Mathematicae, XV(3), pp. 345–396, was used to solve the derived equations with variable coefficients. The obtained solutions of the equations have the form of series relative to Legendre polynomials. A numerical example dealing with the free vibrations of the beam was solved to verify the model and the effectiveness of the presented solution method. The results were compared with the results yielded by finite elements method (FEM).
Wydawca
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wrocław, Poland
Bibliografia
  • [1] Ambrosini, R. D., Riera, J. D. & Danesi, R. F. (2000). A modified Vlasov theory for dynamic analysis of thin-walled and variable open section beams. Engineering Structures. 22(8), 890-900. DOI: 0.1016/S0141-0296(99)00043-7.
  • [2] Arpaci, A. & Bozdag, S. E. (2002). On free vibration analysis of thin-walled beams with nonsymmetrical open cross-sections. Computers and Structures. 80(7-8), 691-695.
  • [3] Asgarian, B., Soltani, M. & Mohri, F. (2013). Lateral-torsional buckling of tapered thin-walled beams with arbitrary crosssections. Thin-Walled Structures. 62,96-108. DOI: 10.1016/j. tws.2012.06.007.
  • [4] Borbón, F. & Ambrosini, D. (2010). On free vibration analysis of thin-walled beams axially loaded. Thin-Walled Structures. 48(12), 915-920. DOI: 10.1016/j.tws.2010.06.002.
  • [5] Chen, C. N. (1998). Variational derivation of the dynamic equilibrium equations of nonprismatic thin-walled beams defined on an arbitrary coordinate system. Mechanics of Structures and Machines. 26(2),219-237.
  • [6] Eisenberger. M. (1997). Torsional vibrations of open and variable cross-section bars. Thin-Walled Structures.28(3-4), 269-278.
  • [7] Heyliger, P. R. (2015). Elasticity-based free vibration of anisotropic thin-walled beams. Thin-Walled Structures.95:73-87. DOI: 10.1016/j.tws.2015.06.014.
  • [8] Lebiediew, N. N. (1957). Special Functions and their applications. Warsaw: PWN; (in Polish).
  • [9] Lewanowicz, S. (1976). Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series. Applicationes Mathematicae XV(3), 345-96.
  • [10] Nguyen, C. T., Moon. J., Le. V. N. & Lee, H. (2011). Natural frequency for torsional vibration of simply supported steel I-girders with intermediate bracings. Thin-Walled Structures. 49(4), 534-542. DOI: 10.1016/j.tws.2010.12.001.
  • [11] Machado, S. P. & Cortínez, V. H. (2005). Non-linear model for stability of thin-walled composite beams with shear deformation. Thin-Walled Structures. 43(10),1615-1645. DOI: 10.1016/j.tws.2005.06.008.
  • [12] Mohri, F., Brouki, A. & Roth, J. C. (2003). Theoretical and numerical stability analyses of unrestrained, mono-symmetric thin-walled beams. Journal of Constructional Steel Research. 59(1), 63-90. DOI: 10.1016/S0143-974X(02)00007-X.
  • [13] Mohri, F., Damil, N. & Ferry, M. P. (2008). Large torsion finite element model for thin-walled beams. Computers and Structures. 86(7-8), 671-683. DOI: 10.1016/j. compstruc.2007.07.007.
  • [14] Paszkowski, S. (1975). Numerical applications of Chebyshev polynomials. Warsaw: PWN; (in Polish).
  • [15] Ruta, P. & Szybiński, J. (2014). Analysis of the free vibration of a thin-walled nonprismatic beam. Journal of Civil Engineering, Environment and Architecture. XXXI(61), 173-184 (in Polish). DOI:10.7862/rb.2014.39.
  • [16] Ruta, P. (1999). Application of Chebyshev series to solution of non-prismatic beam vibration problem. Journal of Sound and Vibration. 227(2), 449-467. DOI: 10.1006/jsvi.1999.2348.
  • [17] Ruta P. (2002). Dynamic stability problem of a non-prismatic rod. Journal of Sound and Vibration. 250(3), 445-464. DOI: 10.1006/jsvi.2001.3954.
  • [18] Ruta, P. &Szybiński, J. (2015). Nonlinear analysis of nonprismatic Timoshenko beam for different geometric nonlinearity models. International Journal of Mechanical Sciences. 101-102, 349-362. DOI: 10.1016/j.ijmecsci.2015.07.020.
  • [19] Ruta P. (2006). The application of Chebyshev polynomials to the solution of the nonprismatic Timoshenko beam vibration problems. Journal of Sound and Vibration. 296(1-2), 243-263. DOI: 10.1016/j.jsv.2006.02.011.
  • [20] Soltani, M., Asgarian, B. & Mohri, F. (2014a). Elastic instability and free vibration analyses of tapered thin-walled beams by the power series method. Journal of Constructional Steel Research. 96,106-126. DOI: 10.1016/j.jcsr.2013.11.001.
  • [21] Soltani, M., Asgarian, B. & Mohri, F. (2014b). Finite element method for stability and free vibration analyses of nonprismatic thin-walled beams. Thin-Walled Structures. 82, 245- 261. DOI: 10.1016/j.tws.2014.04.012.
  • [22] Wilde, P. (1968). The torsion of thin-walled bars with variable cross-section. Archives of Mechanics. 4(20), 431-443.
  • [23] Wolfram Mathematica 10. Wolfram Research ©Copyright 1988- 2015.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-76d5ffcf-67ad-4166-8272-5cf8c6099634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.