PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing Phishing Detection in Cloud Environments Using RNN-LSTM in a Deep Learning Framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phishing attacks targeting cloud computing services are more sophisticated and require advanced detection mechanisms to address evolving threats. This study introduces a deep learning approach leveraging recurrent neural networks (RNNs) with long short-term memory (LSTM) to enhance phishing detection. The architecture is designed to capture sequential and temporal patterns in cloud interactions, enabling preciseidentification of phishing attempts. The model was trained andvalidated using a dataset of 10,000 samples, adapted from the PhishTank repository. This dataset includes a diverse range of attack vectors and legitimate activities, ensuring comprehensive coverage and adaptability to real-world scenarios. The keycontribution of this work includes the development of a high-performance RNN-LSTM-based detection mechanism optimized for cloud-specific phishing patterns that achieve 98.88% accuracy. Additionally, the model incorporates a robust evaluation framework to assess its applicability in dynamic cloud environments. The experimental results demonstrate the effectiveness of the proposed approach, surpassing existing methods in accuracy and adaptability.
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj, Algeria
  • University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj, Algeria
Bibliografia
  • [1] C. Sharma and C. Sharma, “Cloud Computing Security: Threatsand Mitigation Strategies”,2024 International Conference on Signal Processing and Advance Research in Computing (SPARC), vol.1,Lucknow, India, 2024.
  • [2] M. Dawoodet al., “Cyberattacks and Security of Cloud Computing:A Complete Guideline”,Symmetry, vol.15, no.11,2023(https://doi.org/10.3390/sym15111981).
  • [3] P. Prajapatiet al., “Phishing E-mail Detection Using Machine Learn-ing”,Smart Innovation, Systems and Technologies, vol.392,2023(https://doi.org/10.1007/978-981-97-3690-4_32).
  • [4] J.K. Samriyaet al., “Blockchain and Reinforcement Neural Networkfor Trusted Cloud Enabled IoT Network”,IEEE Transactions on Consumer Electronics, vol.70, no.1, pp.2311–2322,2024(https://doi.org/10.1109/TCE.2023.3347690).
  • [5] B. Jha, M. Atre, and A. Rao, “Detecting Cloud-based Phishing Attacksby Combining Deep Learning Models”,2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-IS A), Atlanta, USA,2023(https://doi.org/10.1109/TPS-ISA56441.2022.00026).
  • [6] S.R. Alotaibiet al., “Explainable Artificial Intelligence in Web Phishing Classification on Secure IoT with Cloud-based Cyber-physical Systems”,Alexandria Engineering Journal, vol.110, pp.490–505,2024 (https://doi.org/10.1016/j.aej.2024.09.115).
  • [7] P. Ramadeviet al., “Analysis of Phishing Attack in Distributed Cloud Systems Using Machine Learning”,2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India,2023(https://doi.org/10.1109/ICEEICT56924.2023.10157447).
  • [8] U.A. Buttet al., “Cloud-based Email Phishing Attack Using Machineand Deep Learning Algorithm”,Complex & Intelligent Systems, vol.9, pp.3043–3070,2023(https://doi.org/10.1007/s40747-022-00760-3).
  • [9] A. Alhogail and A. Alsabih, “Applying Machine Learning and Natural Language Processing to Detect Phishing Email”,Computers and Security, vol.110, art. no.102414,2021(https://doi.org/10.1016/j.cose.2021.102414).
  • [10] I. Sahaet al., “Phishing Attacks Detection Using Deep Learning Approach”,2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,2020(https://doi.org/10.1109/ICSSIT48917.2020.9214132).
  • [11] M.M. Alani and H. Tawfik, “PhishNot: A Cloud-based Machine Learning Approach to Phishing URL Detection”,Computer Networks,vol.218, art. no.109407,2022(https://doi.org/10.1016/j.comnet.2022.109407).
  • [12] M. Elberri, U. Tokeser, J. Rahebi, and J. Lopez-Guede, “A Cyber Defense System Against Phishing Attacks with Deep Learning Game Theory and LSTM-CNN with African Vulture Optimization Algorithm (AVOA)”,International Journal of Information Security, vol.23, pp.2583–2606,2024(https://doi.org/10.1007/s10207-024-00851-x).
  • [13] E.A. Aldakheelet al., “A Deep Learning-based Innovative Techniquefor Phishing Detection in Modern Security with Uniform Resource Locators”,Sensors, vol.23, no.9,2023(https://doi.org/10.3390/s23094403).
  • [14] F. Sadique, R. Kaul, S. Badsha, and S. Sengupta, “An Automated Framework for Real-time Phishing URL Detection”,Proc. of the10th Annual Computing and Communication Workshop and Conference (CCWC), pp.335–341,2020(https://doi.org/10.1109/CCWC47524.2020.9031269).
  • [15] O. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine Learning Based Phishing Detection from URLs”,Expert Systems with Applications, vol.117, pp.345–357,2018(https://doi.org/10.1016/j.eswa.2018.09.029).
  • [16] R. Rao, T. Vaishnavi, and A. Pais, “CatchPhish: Detection of Phishing Websites by Inspecting URLs”,Journal of Ambient Intelligence and Humanized Computing, vol.11, pp.813–825,2019(https://doi.org/10.1007/s12652-019-01311-4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b98c3342-e4ba-4a99-9774-7da9adea403d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.