PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of various temperatures and strain-rates combinations on the thermomechanical behavior of 42CrMo steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates experimentally the thermomechanical response of 42CrMo steel under several combinations of temperatures and strain-rate. To characterize the flow stress of this highstrength 42CrMo steel, two distinct test configurations were utilized. The first consisted of conventional uniaxial tensile tests conducted at room and elevated temperatures of 523◦K, 723◦K and 923◦K and three quasi-static strain-rates at 0.0015 s−1, 0.015 s−1, and 0.15 s−1. The second test configuration was carried out under dynamic compression using a drop mass bench at room temperature with three different dynamic strain-rates of 300 s−1, 400 s−1, and 500 s−1. Particular attention was paid to key features such as work-hardening (WH), grain size, dynamic strain aging (DSA), formation of microcavities, and their coupling with the influence of temperature/strain-rate combination. The dependence of 42CrMo steels’ flow stress on the quasi-static strain-rate at room temperature was almost insignificant. However, the strain-rate sensitivity increased with increasing temperatures. At high temperatures, different factors contributed to modifying the alloy microstructure which has a significant impact on the alloy’s mechanical properties. Quantification of the micro-cracks density and fractured specimens’ voids was established using scanning electron microscopy (SEM) images. The Voyiadjis–Abed (VA) constitutive model was utilized in describing the flow stress of 42CrMo steels and implemented in the ABAQUS software to develop a robust finite element model capable of accurately simulating variant structural responses of 42CrMo steel alloy.
Rocznik
Strony
345–--372
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • Laboratoire Quartz, Supméca, 3, rue Fernand Hainaut, 93407 St Ouen Cedex, France
  • Université Paris 8, IUT de Tremblay, 93290 Tremblay-en-France, France
autor
  • Department of Civil Engineering, American University of Sharjah, Sharjah 26666, UAE
autor
  • Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstraße 15, D-99423 Weimar, Germany
  • Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
Bibliografia
  • 1. A. Kundu, D.P. Field, P.C. Chakraborti, Effect of strain and strain-rate on the development of deformation heterogeneity during tensile deformation of a solution annealed 304 LN austenitic stainless steel: an EBSD study, Materials Science and Engineering: A, 773, 138854, 2020.
  • 2. B. Jia, A. Rusinek, R. Pesci, S. Bahi, R. Bernier, Thermo-viscoplastic behavior of 304 austenitic stainless steel at various strain-rates and temperatures: testing, modeling and validation, International Journal of Mechanical Sciences, 170, 105356, 2020.
  • 3. J. Gordon, J. Hochhalter, C. Haden, D.G. Harlow, Enhancement in fatigue performance of metastable austenitic stainless steel through directed energy deposition additive manufacturing, Materials & Design, 168, 107630, 2019.
  • 4. M. Güden, S. Enser, M. Bayhan, A. Taşdemirci, H. Yavaş, The strain-rate sensitive flow stresses and constitutive equations of a selective-laser-melt and an annealed-rolled 316L stainless steel: a comparative study, Materials Science and Engineering: A, 838, 142743, 2022.
  • 5. T.S. Kumar, A. Nagesha, K. Mariappan, M.K. Dash, Deformation and failure behaviour of 316 LN austenitic stainless-steel weld joint under thermomechanical low cycle fatigue in as-welded and thermally aged conditions, International Journal of Fatigue, 149, 106269.
  • 6. F. Abed, A. Abdul-Latif, A. Yehia, Experimental study on the mechanical behavior of EN08 steel at different temperatures and strain-rates, Metals, 9, 736–745, 2018.
  • 7. F. Abed, M. Saffarini, A. Abdul-Latif, G.Z. Voyiadjis, Flow stress and damage behavior of C45 Steel over a range of temperatures and loading rates, ASME-Journal of Engineering Materials and Technology, 139, 02101–02102, 2017.
  • 8. H.F. Abed, A.K. Al-Tamimi, R.M. Al-Himairee, Characterization and modeling of ductile damage in structural steel at low and intermediate strain-rates, Journal of Engineering Mechanics, 138, 9, 1186–1194, 2012.
  • 9. M. Varga, S. Leroch, T. Gross, H. Rojacz, S.J. Eder, M. Grillenberger, M.R. Ripoll, Scratching aluminium alloys–modelling and experimental assessment of damage as function of the strain-rate, Wear, 476, 203670, 2021.
  • 10. F. Abed, F. Makarem, Comparisons of constitutive models for steel over a wide range of temperatures and strain-rates, Journal of Engineering Materials and Technology, 134, 2, 021001, 2012.
  • 11. A. Abdul-Latif, K. Saanouni, Damaged an elastic behavior of FCC polycrystalline metals with micromechanical approach, International Journal of Damage Mechanics, 3, 237, 1994.
  • 12. M. Chadli, A. Abdul-Latif, Meso-damage evolution in polycrystals, ASME, Engineering Materials and Technology, 127, 214–221, 2005.
  • 13. R.A. Lebensohn, A.D. Rollett, Spectral methods for full-field micromechanical modelling of polycrystalline materials, Computational Materials Science, 173, 109336, 2020.
  • 14. F.H. Abed, S.I. Ranganathan, M.A. Serry, Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain-rates and temperatures, Mechanics of Materials, 77, 142–157, 2014.
  • 15. F.H. Abed, Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications, Mechanics of Time-Dependent Materials, 14, 4, 329–345, 2010.
  • 16. G. Voyiadjis, F. Abed, Transient localizations in metals using microstructure-based yield surfaces, Modelling and Simulation in Materials Science and Engineering, 15, 1, S832006, 2006.
  • 17. F. Abed, C. ElSayegh, A. Abdul-Latif, Thermomechanical Description of AISI4140 Steel at Elevated Temperatures, Proceedings of the TMS Middle East–Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), pp. 491–499, Springer, 2015.
  • 18. J. Stewart, B. Alexandrov, Quantification of the hardness response in the heat-affected zone of low alloy steels subjected to temper bead welding, Journal of Manufacturing Processes, 66, 325–340, 2021.
  • 19. B. Han, R. Zhu, C. Feng, W. Li, G. Wei, Z. Wang, Q. Li, CO2 effective conversion in Fe-C-Al-Si molten steel under vacuum conditions, Vacuum, 179, 109520, 2020.
  • 20. A. Meysami, R. Ghasemzadeh, S. Seyedein, M. Aboutalebi, An investigation on the microstructure and mechanical properties of direct-quenched and tempered AISI 4140 steel, Materials & Design, 31, 3, 1570–1575, 2010.
  • 21. J. Schwalm, M. Gerstenmeyer, F. Zanger, V. Schulze, Complementary machining: effect of tool types on tool wear and surface integrity of AISI 4140, Procedia CIRP, 87, 89–94, 2020.
  • 22. C. Wang, Q. Guo, M. Shao, H. Zhang, F. Wang, B. Song, H. Li, Microstructure and corrosion behavior of linear friction welded TA15 and TC17 dissimilar joint, Materials Characterization, 111871, 2022.
  • 23. C. Jiang, X. Zhang, D. Wang, L. Zhang, X. Cheng, Phosphate conversion coatings on 35CrMnSi steels subjected to different heat treatments, Electrochemistry Communications, 110, 106636, 2020.
  • 24. D. Kaiser, J. Damon, F. Mühl, B. de Graaff, D. Kiefer, S. Dietrich, V. Schulze, Experimental investigation and finite-element modeling of the short-time induction quench-and-temper process of AISI 4140, Journal of Materials Processing Technology, 279, 116485, 2020.
  • 25. U. Thamma, P. Jantasorn, Effects of shear deformation via torsion on tensile strain hardening behavior of SCM415 low-alloy steel, Materials Today: Proceedings, 2021.
  • 26. H. Zhu, H. Ou, Constitutive modelling of hot deformation behaviour of metallic materials, Materials Science and Engineering: A, 832, 142473, 2022.
  • 27. L. Guo, F. Wang, P. Zhen, X. Li, M. Zhan, A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets, Chinese Journal of Aeronautics, 32, 2, 531–545, 2019.
  • 28. Y. Wu, Y. Jia, S. Zhang, Y. Liu, H. Xiong, G. Chen, Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions, Journal of Magnesium and Alloys, 2021, doi: 10.1016/j.jma.2021.11.009.
  • 29. K. Suresh, K.P. Rao, Y.V.R.K. Prasad, N. Hort, K.U. Kainer, Study of hot forging behavior of as-cast Mg–3Al–1Zn–2Ca alloy towards optimization of its hot workability, Materials & Design, 57, 697–704, 2014.
  • 30. A.M. Philip, K. Chakraborty, Some studies on the machining behaviour of 316L austenitic stainless steel, Materials Today: Proceedings, 2022.
  • 31. J. Zhao, Z. Liu, B. Wang, J. Hu, Y. Wan, Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions, Mechanical Systems and Signal Processing, 150, 107302, 2021.
  • 32. M.S. Chen, Y.C. Lin, X.S. Ma, The kinetics of dynamic recrystallization of 42CrMosteel, Materials Science and Engineering: A, 556, 260–266, 2012.
  • 33. N. Ranc, D. Wagner, Some aspects of Portevin–Le Chatelier plastic instabilities investigated by infrared pyrometry, Materials Science and Engineering: A, 394, 87–95, 2005.
  • 34. P.F. Giroux, F. Dalle, M. Sauzay, J. Malaplate, B. Fournier, A.F. Gourgues-Lorenzon, Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature, Materials Science and Engineering: A, 527, 3984–3993, 2010.
  • 35. J. Eisenträger, K. Naumenko, H. Altenbach, E. Gariboldi, Analysis of temperature and strain-rate dependencies of softening regime for tempered martensitic steel, The Journal of Strain Analysis for Engineering Design, 52, 226–238, 2017.
  • 36. S. Alsagabi, T. Shrestha, I. Charit, High temperature tensile deformation behavior of Grade 92 steel, Journal of Nuclear Materials, 453, 151–157, 2014.
  • 37. D. Yuzbekova, A. Mogucheva, D. Zhemchuzhnikova, T. Lebedkina, M. Lebyodkin, R. Kaibyshev, Effect of microstructure on continuous propagation of the Portevin–Le Chatelier deformation bands, International Journal of Plasticity, 96, 210–226, 2017.
  • 38. L.-E. Lindgren, J.G. Back, Elastic properties of ferrite and austenite in low alloy steel versus temperature and alloying, Materialia, 5, 3, 100193, 2019.
  • 39. D. Zhemchuzhnikova, M. Lebyodkin, D. Yuzbekova, T. Lebedkina, A. Mogucheva, R. Kaibyshev, Interrelation between the Portevin Le–Chatelier effect and necking in AlMg alloys, International Journal of Plasticity, 110, 95–109, 2018.
  • 40. T. Wang, J. Jonas, H. Qin, S. Yue, Effect of dynamic strain aging on the deformation and twinning behavior of a Mg–2Zn–2Nd alloy, Materials Science and Engineering: A, 645, 126–135, 2015.
  • 41. A.H. Cottrell, LXXXVI. A note on the Portevin–Le Chatelier effect, Materials Science and Engineering, 744, 355, 829–832, 1953.
  • 42. S.-J. Lee, J. Kim, S.N. Kane, B.C.D. Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Materialia, 59, 6809–6819, 2011.
  • 43. F. Yang, H. Luo, E. Pu, S. Zhang, H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, International Journal of Plasticity, 103, 188–202, 2018.
  • 44. R.C. Picu, A mechanism for the negative strain-rate sensitivity of dilute solid solutions, Acta Materialia, 52, 3447–3458, 2004.
  • 45. F. Shen, S. Münstermann, J. Lian, An evolving plasticity model considering anisotropy, thermal softening and dynamic strain aging, International Journal of Plasticity, doi: 10.1016/j.ijplas.2020.102747, 2020.
  • 46. G.Z. Voyiadjis, Y. Song, A. Rusinek, Constitutive model for metals with dynamic strain aging, Mechanics of Materials, 129, 353–360, doi: 10.1016/j.mechmat.2018. 12.012, 2019.
  • 47. C.R. Calladine, R.W. English, Strain-rate and inertia effect in the collapse of the two types of energy-absorbing structure, International Journal of Mechanical Sciences, 26, 11/12, 689–701, 1984.
  • 48. R. Wang, C.Q. Ru, An energy criterion for dynamic plastic buckling of circular cylinders under impulsive loading, in: Metal Forming and Impact Mechanics, S.R. Reid [ed.], pp. 213–223, Pergamon, New York, 1985.
  • 49. A. Abdul-Latif, R. Baleh, Dynamic biaxial plastic buckling of circular shells, ASME, Journal of Applied Mechanics, 75, 3, 031013, 2008.
  • 50. R. Baleh, A. Abdul-Latif, A. Menouer, D. Razafindramary, New experimental investigation of non-conventional dynamic biaxial plastic buckling of square aluminium tubular structures, International Journal of Impact Engineering, 122, 333–345, 2018.
  • 51. G.Z. Voyiadjis, T. Park, Anisotropic damage for the characterization of the onset of macro-crack initiation in metals, International Journal of Damage Mechanics, 5, 1, 68–92, 1996.
  • 52. G.Z. Voyiadjis, F.H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain-rate dependency, Mechanics of Materials, 37, 355–378, 2005.
  • 53. G.Z. Voyiadjis, F.H. Abed, Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain-rates and temperatures, Archives of Mechanics, 57, 4, 299–343, 2005.
  • 54. F.H. Abed, S.I. Ranganathan, M.A. Serry, Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain-rates and temperatures, Mechanics of Materials, 77, 142–157, 2014.
  • 55. F.H. Abed, Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications, Mechanics of Time-Dependent Materials, 14, 4, 329–345, 2010.
  • 56. A. Tabei, F. Abed, G.Z. Voyiadjis, H. Garmestani, Constitutive modeling of Ti- 6Al-4V at a wide range of temperatures and strain-rates, European Journal of Mechanics-A/Solids, 63, 128–135, 2017.
  • 57. A. Smith, ABAQUS/Explicit, Simulia, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6582d670-f62b-4ff9-b69d-d3bf799390b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.