PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Accuracy Analysis Comparison of Supervised Classification Methods for Mapping Land Cover Using Sentinel 2 Images in the Al‑Hawizeh Marsh Area, Southern Iraq

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Land cover mapping of marshland areas from satellite images data is not a simple process, due to the similarity of the spectral characteristics of the land cover. This leads to challenges being encountered with some land covers classes, especially in wetlands classes. In this study, satellite images from the Sentinel 2B by ESA (European Space Agency) were used to classify the land cover of Al Hawizeh marsh/Iraq Iran border. Three classification methods were used aimed at comparing their accuracy, using multispectral satellite images with a spatial resolution of 10 m. The classification process was performed using three different algorithms, namely: Maximum Likelihood Classification (MLC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The classification algorithms were carried out using ENVI 5.1 software to detect six land cover classes: deep water marsh, shallow water marsh, marsh vegetation (aquatic vegetation), urban area (built up area), agriculture area, and barren soil. The results showed that the MLC method applied to Sentinel 2B images provides a higher overall accuracy and the kappa coefficient compared to the ANN and SVM methods. Overall accuracy values for MLC, ANN, and SVM methods were 85.32%, 70.64%, and 77.01% respectively.
Rocznik
Strony
5--21
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • University of Technology, Civil Engineering Department, Baghdad, Iraq
  • Ministry of Science and Technology, Directorate of Space and Communication, Baghdad, Iraq
Bibliografia
  • [1] Chatelard G., Abulhawa T.: The World Heritage Nomination of the Ahwar of Southern Iraq: Refuge of Biodiversity and Relict Landscape of the Mesopotamian Cities. Arab Regional Centre for World Heritage, Manama, Kingdom of Bahrain 2015.
  • [2] Romano L.: The Mesopotamian Marshlands (Al‑Ahwār) in the Past and Today. [in:] Collins P. (ed.), Basra: Its History, Culture and Heritage: Proceedings of the Conference Celebrating the Opening of the Basrah Museum, September 28–29, 2016, British Institute for the Study of Iraq, 2019, pp. 7–12.
  • [3] Albarakat R., Lakshmi V., Tucker C.J.: Using Satellite Remote Sensing to Study the Impact of Climate and Anthropogenic Changes in the Mesopotamian Marshlands, Iraq. Remote Sensing, vol. 10, 2018, 1524. https://doi.org/10.3390/rs10101524.
  • [4] UNESCO: The Ahwar of Southern Iraq: Refuge of Biodiversity and the Relict Landscape of the Mesopotamian Cities. 1481, 2016.
  • [5] Partow H., Jaquet J.M., Allenbach K., Schwarzer S., Nordbeck O.: Iraqi Marshlands Observation System. United Nations Environment Programme (UNEP). UNEP Technical Report, Nairobi, Kenya 2005.
  • [6] Richardson C.J., Reiss P., Hussain N.A., Alwash A.J., Pool D.J.: The restoration potential of the Mesopotamian marshes of Iraq. Science, vol. 307, issue 5713, 2005, pp. 1307–1311. https://doi.org/10.1126/science.1105750.
  • [7] Van Dessel W., Van Rompaey A., Poelmans L., Szilassi P.: Predicting land cover changes and their impact on the sediment influx in the Lake Balaton catchment. Landscape Ecology, vol. 23, 2008, pp. 645–656. https://doi.org/10.1007/s10980-008-9227-6
  • [8] Ziboon A.R.T., Alwan I.A., Khalaf A.G.: Utilization of Remote Sensing Data and GIS Applications for Determination of the Land Cover Change in Karbala Governorate. Engineering and Technology Journal, vol. 31, 2013, pp. 2773–2787.
  • [9] Głowienka E., Michałowska K.: Analyzing the Impact of Simulated Multispectral Images on Water Classification Accuracy by Means of Spectral Characteristics. Geomatics and Environmental Engineering, vol. 14, no. 1, 2020, pp. 47–58. https://doi.org/10.7494/geom.2020.14.1.47.
  • [10] Hussein Z.E., Hasan R.H., Aziz N.A.: Detecting the Changes of AL-Hawizeh Marshland and Surrounding Areas Using GIS and Remote Sensing Techniques. Association of Arab Universities Journal of Engineering Sciences, vol. 25(1), 2018, pp. 53–63.
  • [11] Alwan I.A., Aziz N.A., Hamoodi M.N.: Potential Water Harvesting Sites Identification Using Spatial Multi‑Criteria Evaluation in Maysan Province, Iraq. ISPRS International Journal of Geo‑Information, vol. 9(4), 2020, 235. https://doi.org/10.3390/ijgi9040235.
  • [12] Hansen M., Dubayah R., DeFries R.: Classification trees: An alternative to traditional land cover classifiers. International Journal of Remote Sensing, vol. 17, 1996, pp. 1075–1081. https://doi.org/10.1080/01431169608949069.
  • [13] Pal M., Mather P.M.: An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, vol. 86, 2003, pp. 554–556. https://doi.org/10.1016/S0034-4257(03)00132-9.
  • [14] Khorram S.: Accuracy assessment ofremote sensing‑derived change detection. ASPRS Publications,American Society for Photogrammetry and Remote Sensing, 1999.
  • [15] Talukdar S., Singha P., Mahato S., Shahfahad Pal S., Liou Y.-A., Rahman A.: Land‑Use Land‑Cover Classification by Machine Learning Classifiers for Satellite Observations – A Review. Remote, vol. 12, 2020, 1135. https://doi.org/10.3390/rs12071135.
  • [16] Nguyen H.T.T., Doan T.M., Tomppo E., McRoberts R.E.: Land Use/Land Cover Mapping Using Multitemporal Sentinel‑2 Imagery and Four Classification Methods – A Case Study from Dak Nong, Vietnam. Remote Sensing, vol. 12, 2020, 1367. https://doi.org/10.3390/rs12091367.
  • [17] Al‐Mudaffar F.N., Goodwin K.P., Mahdi B.A., Stevens M.L.: Effects of Mesopotamian Marsh (Iraq) desiccation on the cultural knowledge and livelihood of Marsh Arab women. Ecosystem Health and Sustainability, vol. 2(3), 2016, 1207. https://doi.org/10.1002/ehs2.1207.
  • [18] Canadian‑Iraq Marshlands Initiative (CIMI): Atlas of the Iraqi marshes. University of Victoria, Victoria, BC, 2010.
  • [19] Ministry of Water Resources (MOWR): Strategy for Water & Land Resources in Iraq/Final Report – Republic of Iraq. 2014.
  • [20] Alwan I.A., Karim H.H., Aziz N.A.: Agro‑Climatic Zones (ACZ) Using Climate Satellite Data in Iraq Republic. IOP Conference Series: Materials Science and Engineering, vol. 518, issue 2, 2019, 022034. https://doi.org/10.1088/1757899X/518/2/022034.
  • [21] European Space Agency (ESA): MultiSpectral Instrument (MSI) Overview. Sentinel Online. https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument [access: 20.06.2020].
  • [22] ESA: Copernicus Open Access Hub. https://scihub.copernicus.eu/ [access: 24.06.2020].
  • [23] Ministry of Water Resources (MOWR): Study the Rehabilitation of AL Huwayza Marsh Ecological System. Survey Report, 2006 [unpublished].
  • [24] Thenkabail P.S.: Remote Sensing Handbook, Volume 1: Remotely Sensed Data Characterization, Classification, and Accuracies. Taylor & Francis, 2016.
  • [25] Horning N.: Land cover classification methods. Remote Sensing & Geographic Information Systems Facility. Remote Sensing Resources. Center for Biodiversity and Conservation at the American Museum of Natural History, 2004.
  • [26] Lefebvre A., Sannier C., Corpetti T.: Monitoring Urban Areas with Sentinel‑2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sensing, vol. 8(7), 2016, 606. https://doi.org/10.3390/rs8070606.
  • [27] Otukei J.R., Blaschke T.: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, vol. 12, 2010, pp. S27–S31. https://doi.org/10.1016/j.jag.2009.11.002.
  • [28] Tso B., Mather P.M.: Classification methods for remotely sensed data (No. LC0431). 2nd ed. CRC Press, 2009.
  • [29] Vapnik V.N.: The Nature of Statistical Learning Theory. Springer, New York 1995.
  • [30] Mountrakis G., IM J., Ogole C.: Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, 2011, pp. 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.
  • [31] Zhao Q., Principe J.C.: Support vector machines for SAR automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, vol. 37, issue 2, pp. 643–654. https://doi.org/10.1109/7.937475.
  • [32] Canty M.J.: Image Analysis, Classification and Change Detection in Remote Sensing, with algorithms for ENVI/IDL. CRC Press, Boca Raton 2007.
  • [33] Cortes C., Vapnik V.: Support‑vector networks. Machine Learning, vol. 20, 1995, pp. 273–297. https://doi.org/10.1007/BF00994018.
  • [34] Saga‑GIS Web Page: http://www.saga-gis.org/saga_tool_doc/2.2.0/imagery_svm_0.html [access: 10.06.2020].
  • [35] Rumelhart D.E., Hinton G.E., Williams R.J.: Learning Internal Representations by Error Propagation. [in:] Rumelhart D., McClelland J.L.: Parallel distributed processing: explorations in the microstructure of cognition. Volume 1. Foundations, MIT Press, Cambridge, Massachusetts 1986, pp. 318–362.
  • [36] Richards J.A.: Remote Sensing Digital Image Analysis. Springer‑Verlag, Berlin 1999.
  • [37] Richards J.A.: Remote Sensing Digital Image Analysis: An Introduction. Springer‑Verlag, Berlin 2013.
  • [38] USGS: The Spatial Data Transfer Standard. United States Geological Survey, Draft, January 1990.
  • [39] Park M.H., Stenstrom M.K.: Classifying environmentally significant urban land uses with satellite imagery. Journal of Environmental Management, vol. 86(1), 2008, pp. 181–192. https://doi.org/10.1016/j.jenvman.2006.12.010.
  • [40] Cracknell M.J., Reading A.M.: Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, vol. 63, 2014, pp. 22–33. https://doi.org/10.1016/j.cageo.2013.10.008.
  • [41] Viera A.J., Garrett J.M.: Understanding interobserver agreement: The kappa statistic. Family Medicine, vol. 37(5), 2005, pp. 360–363.
  • [42] Bishop Y., Fienberg S., Holland P.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA, 1975.
  • [43] Rosenfield G.H., Fitzpatrick‑Lins K.: A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, vol. 52(2), 1986, pp. 223–227.
  • [44] Kranjčić N., Medak D., Župan R., Rezo M.: Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sensing, vol. 11(6), 2019, 655. https://doi.org/10.3390/rs11060655.
  • [45] Foody G.M.: Status of land cover classification accuracy assessment. Remote Sensing of Environment, vol. 80, 2002, pp. 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4.
  • [46] Congalton R.G., Green K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 2nd ed. CRC Press, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-05faaa2b-16d2-4042-87bf-6ca0d64543ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.