PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability Assessment of a Turbogenerator Coil Retaining Ring Based on Low Cycle Fatigue Data

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Ocena niezawodności pierścieni ustalających cewek turbogeneratora w oparciu o dane zmęczeniowe przy małej liczbie cykli
Języki publikacji
EN
Abstrakty
EN
Turbogenerator coil retaining rings are shrunk-fitted onto the rotor over the coils, in order to restrain them against the centrifugal force. They are typically subjected to low cycle fatigue, with a cycle being completed at every machine switch-on and switch-off. The subject of this paper consists in the determination of the failure probability of a coil retaining ring. The failure mode of the ring cracking, when it swells in tension, due to the centrifugal force is here considered. The reliability assessment is preceded by the study of the input variables affecting the low-cycle fatigue load and of their stochastic distributions. This question is tackled by the experimental determination of the static, cyclic and fatigue curves of the involved material and by the application of a statistical model to compute related parameters and their standard deviations. Upon the determination of variable distributions, the probability of failure is estimated in the form of a cumulative distribution function by a computationally efficient methodology, based on the Advanced Mean Value approach. The obtained results account for the material response and the local stressstrain states at the most loaded coil retaining ring region. The determined probability at the end of the machine life, in the order of 10-12, is compatible with reference values for structures under fatigue in the mechanical and aeronautical fields.
PL
Pierścienie ustalające cewek turbogeneratora są pasowane skurczowo na wirniku wokół cerek by zabezpieczyć je przed działaniem sił odśrodkowych. W typowych warunkach, są one poddane narażeniom zmęczeniowym o malej liczbie cykli, przy czym każdy cykl rozpoczyna sie od startu maszyny, a kończy przy jej zatrzymaniu. Przedmiotem artykułu jest wyznaczenie prawdopodobieństwa awarii pierścienia ustalającego cewki. Rozważanym uszkodzeniem jest pękniecie pierścienia spowodowane puchnięciem materiału pod wpływem naprężeń wywołanych silą odśrodkową. Ocena niezawodności przeprowadzona w tej pracy wykorzystuje dane wejściowe wpływające na obciążenie zmęczeniowe przy małej liczbie cykli i ich rozkłady stochastyczne. Dla rozwiązania problemu wyznaczono eksperymentalnie charakterystyki statyczne i krzywe cykli zmęczeniowych stosowanego materiału i zastosowano model statystyczny dla wyliczenia odpowiednich parametrów i ich odchyleń standardowych. Na podstawie wyznaczonych rozkładów zmiennych estymuje się prawdopodobieństwo uszkodzenia w formie dystrybuanty rozkładu. Wykorzystany algorytm obliczeniowy o dużej skuteczności wykorzystuje metodę ”zaawansowanej średniej” (Advanced Mean Value). Uzyskane wyniki dają informacje o odpowiedzi materiału i stanie lokalnych naprężeń i odkształceń w najbardziej obciążonych obszarach pierścienia ustalającego cewki. Prawdopodobieństwo uszkodzenia, wyznaczone na koniec okresu eksploatacji maszyny, wynosi 10-12 i jest porównywalne z wartościami referencyjnymi dla innych konstrukcji mechanicznych i lotniczych narażonych na zmęczenie.
Rocznik
Strony
5--34
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy
autor
  • Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy
Bibliografia
  • [1] Olmi G.: Dalla sperimentazione a fatica oligociclica alla valutazione della probabilit`a di guasto di un rotore di un turboalternatore (in Italian), Proc. 40th AIAS National Conference, Palermo (Italy), 2011, pp. 1-13.
  • [2] Olmi G.: An Efficient Method for the Determination of the Probability of Failure on the Basis of LCF Data: Application to Turbogenerator Design. Structural Durability & Health Monitoring, 2012, Vol. 8, No. 1, pp. 61-89.
  • [3] Huang B., Du X.: Probabilistic uncertainty analysis by mean-value first order Saddlepoint Approximation. Reliability Engineering and System Safety, 2008, Vol. 93, No. 2, pp. 325-336.
  • [4] Wu Y.T., Millwater H.R., Cruse T.A.: Advanced probabilistic structural analysis method for implicit performance functions. AIAA Journal, 1990, Vol. 28, No. 9, pp. 1663-1669.
  • [5] Avrithi K., Ayyub B.M.: A Reliability-Based Approach for Low-Cycle Fatigue Design of Class 2 and 3 Nuclear Piping. Journal of Pressure Vessel Technology, 2010, Vol. 132, No. 5, pp. 051202-1-6.
  • [6] Liu C.L., Lu Z.Z., Xu Y.L., Yue Z.F.: Reliability analysis for low cycle fatigue life of the aeronautical engine turbine disc structure under random environment. Materials Science and Engineering A, 2005, Vol. 395, No. 1-2, pp. 218-225.
  • [7] Olmi G.: Utilizzo di metodi non lineari nella valutazione affidabilistica di dispositivi meccanici con pi`u variabili aleatorie (in Italian), Proc. 40th AIAS National Conference, Palermo (Italy), 2011, pp. 1-15.
  • [8] Wu Y.T., Wirsching P.H.: Advanced Reliability Method for Fatigue Analysis. Journal of Engineering Mechanics, 1984, Vol. 110, No. 4, pp. 536-553.
  • [9] Olmi G., Freddi A.: LCF on turbogenerator rotors and coil retaining rings: material characterization and sensitivity analyses. Proc. ICEM14 - 14th International Conference on Experimental Mechanics, Poitiers (France), 2010, Vol. 1, pp. 1-9.
  • [10] Olmi G.: Low Cycle Fatigue experiments on turbogenerator steels and a new method for defining confidence bands. Journal of Testing and Evaluation (JTE), 2012, Vol. 40, No. 4, pp. 539-552.
  • [11] Olmi G.: A Novel Method for Strain Controlled Tests. Experimental Mechanics, 2012, Vol. 52, No. 4, pp. 379-393.
  • [12] Olmi G.: A new loading-constraining device for mechanical testing with misalignment autocompensation. Experimental Techniques, 2011, Vol. 35, No. 6, pp. 61-70.
  • [13] Orita K., Ikeda Y., Iwadate T., Ishizaka J.: Development and production of 18Mn-18Cr nonmagnetic retaining ring with high yield strength. ISIJ J, 1990, Vol. 30, No. 8, pp. 587-593.
  • [14] Balitskii A., Krohmalny O., Ripey I.: Hydrogen cooling of turbogenerators and the problem of rotor retaining ring materials degradation. International Journal of Hydrogen Energy, 2000, Vol. 25, No. 2, pp. 167-171.
  • [15] International Organization for Standardization ISO 12106:2003(E): Metallic materials-Fatigue testing-Axial-strain-controlled method, 2003, Geneva (Switzerland).
  • [16] Doyle J.F.: Modern Experimental Stress Analysis. West Sussex (England), John Wiley and Sons Ltd., 2004.
  • [17] Wirsching P.H., Torng T.Y., Martin W.S.: Advanced fatigue reliability analysis. International Journal of Fatigue, 1991, Vol. 13, No. 5, pp. 389-394.
  • [18] Grujicic M., Arakere G., Bell W.C., Marvi H., Yalavarthy H.V., Pandurangan B., Haque I., Fadel G.M.: Reliability-Based Design Optimization for Durability of Ground Vehicle Suspension System Components. Journal of Materials Engineering and Performance, 2010, Vol. 19, No. 3, pp. 301-313.
  • [19] Choi K.K., Youn B.D.: On Probabilistic Approaches for Reliability-Based Design Optimization. Proc. 9th AIAA/NASA/USA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA (USA), 2002.
  • [20] Zhu S.-P., Huang H.-Z., Ontiveros V., He L.-P., Modarres M.: Probabilistic Low Cycle Fatigue Life Prediction Using an Energy-Based Damage Parameter and Accounting for Model Uncertainty. International Journal of Damage Mechanics, 2012, Vol. 21, No. 8, pp. 1128-1153.
  • [21] Zhang Z.P., Qiao Y.J., Sun Q., Li C.W., Li J.: Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study. Journal of Materials Engineering and Performance, 2009, Vol. 18, No. 3, pp. 245-254.
  • [22] McDaniels R.L., Chen L., Steward R., Liaw P.K., Buchanan R.A., White S., Liaw K., Klarstrom D.L.: The strain-controlled fatigue behavior and modeling of Haynes R HASTELLOY R C-2000 R superalloy. Materials Science and Engineering A, 2011, Vol. 528, No. 12, pp. 3952-3960.
  • [23] Ellyin F.: Fatigue Damage, Crack Growth, and Life Prediction. London (England), Chapman and Hall, 1997.
  • [24] Ellyin F.: Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure, Biaxial and Multiaxial Fatigue. London (England), Mechanical Engineering Publications Limited, 1989.
  • [25] Suresh S.: Fatigue of Materials. Cambridge (United Kingdom), Cambridge University Press, 1991.
  • [26] Dowling N.E.: Mechanical Behavior of Materials (3rd edition). Prentice-Hall, 2006.
  • [27] Ellyin F.: Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response. Journal of Engineering Materials and Technology, 1985, Vol. 107, No. 2, pp. 119-125.
  • [28] Dominique F.: Structural Components: Mechanical Tests and Behavioral Laws. Wiley-ISTE, 2008.
  • [29] Kang G., Gao Q., Yang X.: Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures. Mechanics of Materials, 2002, Vol. 34, No. 3, pp. 145-159.
  • [30] Dingli J.P., Abdul-Latif A., Saanouni K.: Predictions of the complex cyclic behavior of polycrystals using a self-consistent modeling. International Journal of Plasticity, 2000, Vol. 16, No. 3-4, pp. 411-437.
  • [31] Alvarez-Armas I., Degallaix-Moreuil S.: Duplex Stainless Steels. Wiley-ISTE, 2009.
  • [32] Khutia N., Dey P.P., Kumar Paul S., Tarafder S.: Development of non Masing characteristic model for LCF and ratcheting fatigue simulation of SA333 C-Mn steel. Mechanics of Materials, 2013, Vol. 65, pp. 88-102.
  • [33] Jiang J., Fan Z.: Fatigue behavior of pressure vessel steels at elevated temperature. Journal of China Pressure Vessel Technology, 2003, Vol. 1, pp. 109-114.
  • [34] Zhao Y.X.: A methodology for strain-based fatigue reliability analysis. Reliability Engineering and System Safety, 2000, Vol. 70, No. 2, pp. 205-213.
  • [35] ENV 1991-1 (Eurocode 1): Basis of design and actions on structures - Part I: Basis of design. Brussels, CEN (Comite Europien de la Normalisation), 1994.
  • [36] Mansour A.E., Wirsching P.H., White G.J., Ayyub B.M.: Probability-Based Ship Design: Implementation of Design Guidelines. Washington, DC, NTIS, Report No. SSC 392, 1992.
  • [37] Vyas N.S., Sidharth Rao J.S.: Dynamic stress analysis and a fracture mechanics approach to life prediction of turbine blades. Mechanism and Machine Theory, 1997, Vol. 32, No. 4, pp. 511-527.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-633d8694-9557-4f5f-b8d5-06280f97874f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.