PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional continua for linear elasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional continua is a generalisation of the classical continuum body. This new concept shows the application of fractional calculus in continuum mechanics. The advantage is that the obtained description is non-local. This natural non-locality is inherently a consequence of fractional derivative definition which is based on the interval, thus variates from the classical approach where the definition is given in a point. In the paper, the application of fractional continua to one-dimensional problem of linear elasticity under small deformation assumption is presented.
Słowa kluczowe
Rocznik
Strony
147--172
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Institute of Structural Engineering Poznań University of Technology Piotrowo 5, 60-969 Poznań, Poland
autor
  • Institute of Mathematics Częstochowa University of Technology Armii Krajowej 21, 42-201 Częstochowa, Poland
Bibliografia
  • 1. G.W. Leibniz, Mathematische Schriften, Georg Olms Verlagsbuch-handlung, Hildesheim, 1962.
  • 2. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
  • 3. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, 1999.
  • 4. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • 5. V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 2756–2778, 2008.
  • 6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
  • 7. J.S. Leszczyński, An Introduction to Fractional Mechanics, Monographs No 198, The Publishing Office of Czestochowa University of Technology, 2011.
  • 8. J.S. Leszczynski, T. Blaszczyk, Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter, 13, 4, 429–438, 2011.
  • 9. J.S. Leszczyński, A Discrete Model of the Dynamics of Particle Collision in Granular Flows, Monographs No 106, The Publishing Office of Czestochowa University of Technology, 2005 [in Polish].
  • 10. T. Łodygowski, Theoretical and numerical aspects of plastic strain localization, D.Sc. Thesis, 312, Publishing House of Poznan University of Technology, 1996.
  • 11. Z. Huang, Damage models based on representation of the non-local residual, Mathematics and Mechanics of Solids, 17, 3, 317–326, 2011.
  • 12. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, Advances in Applied Mechanics, 33, 295–361, 1997.
  • 13. R. Borst, J. Pamin, Some novel developments in finite element procedures for gradient-dependent plasticity, International Journal for Numerical Methods in Engineering, 39, 2477–2505, 1996.
  • 14. E.C. Aifantis, Strain gradient interpretation of size effects, International Journal of Fracture, 95, 299–314, 1999.
  • 15. G.Z. Voyiadjis, F.H. Abed, Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures, Archives of Mechanics, 57, 299–343, 2005.
  • 16. P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture, [in:] P. Perzyna [ed.], Localization and fracture phenomena in inelastic solids, chapter 3, 99–241. Springer, 1998; (CISM course and lectures – No.386).
  • 17. T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process, International Journal Damage Mechanics, 6, 364–407, 1997.
  • 18. W. Dornowski, A new integration procedure for thermo-elasto-viscoplasticity, Archives of Mechanics, 54, 389–410, 2002.
  • 19. G.Z. Voyiadjis and D. Faghihi, Localization in stainless steel using microstructural based viscoplastic model, International Journal of Impact Engineering, 54, 114–129, 2013.
  • 20. W. Sumelka, Role of covariance in continuum damage mechanics, ASCE Journal of Engineering Mechanics, 139, 11, 1610–1620, 2013.
  • 21. W. Sumelka, Fractional viscoplasticity, Mechanics Research Communications, 56, 31–36, 2014.
  • 22. M. Klimek, Fractional sequential mechanic’s models with symmetric fractional derivative, Czechoslovak Journal of Physics, 51, 12, 1348–1354, 2001.
  • 23. L. Vazquez, A fruitful interplay: from nonlocality to fractional calculus, [in:] F.Kh. Abdullaev and V.V. Konotop [eds.], Nonlinear Waves: Classical and Quantum Aspects, 129–133, 2004.
  • 24. K.A. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mechanics Research Communications, 33, 753–757, 2006.
  • 25. M. Di Paola, G. Failla, M. Zingales, Physically-based approach to the mechanics of strong non-local linear elasticity theory, Journal of Elasticity, 97, 2, 103–130, 2009.
  • 26. T.M. Atanackovic, B. Stankovic, Generalized wave equation in nonlocal elasticity, Acta Mechanica, 208, 1-2, 1–10, 2009.
  • 27. A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity, European Physical Journal Special Topics, 193, 193–204, 2011.
  • 28. C.S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics, Journal of Elasticity, 107, 107–123, 2012.
  • 29. W. Sumelka, Thermoelasticity in the framework of the fractional continuum mechanics, Journal of Thermal Stresses, 2014, (DOI:10.1080/01495739.2014.885332).
  • 30. J.E. Marsden, T.J.H Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, New Jersey, 1983.
  • 31. G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz–Caputosense, Applied Mathematics and Computation, 217, 1023–1033, 2010.
  • 32. O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A, 40, 24, 6287–6303, 2007.
  • 33. P. Perzyna, Thermodynamics of Inelastic Materials, PWN, Warszawa, 1978 [in Polish].
  • 34. G.A. Holzapfel, Nonlinear Solid Mechanics – A Continuum Approach for Engineering, Wiley, 2000.
  • 35. M. Ciesielski, J. Leszczyński, Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz–Feller fractional derivative, Journal of Theoretical and Applied Mechanics, 44, 2. 393–403, 2006.
  • 36. T. Blaszczyk, M. Ciesielski, M. Klimek, J. Leszczynski, Numerical solution of fractional oscillator equation, Applied Mathematics and Computation, 218, 6, 2480–2488, 2011.
  • 37. Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Applied Mathematics and Computation, 178, 527–533, 2006.
  • 38. T. Blaszczyk, J. Leszczynski, E. Szymanek, Numerical solution of composite left and right fractional caputo derivative models for granular heat flow, Mechanics Research Communications, 48, 42–45, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56ebf07f-b0b6-4822-82ff-89e187d0c67e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.