PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Radical Nitration of Isooctane Fuel via Nitromethane Propellant

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possible radical nitration reactions of isooctane fuel with nitromethane propellant, which is generally used as an additive in fuel formulations, were thermodynamically investigated both at room temperature and at a higher temperature of 691.15 K. The temperature of 691.15 K was chosen because it is the auto-ignition temperature of isooctane and nitromethane and has the potential to mimic better engine conditions. The computational calculations were performed at the theoretical level of DFT UB3LYP/cc-pVDZ. Four different nitration reactions and nitrated products were considered and interpreted in detail. The most and the least favorable nitrations were observed at the primary and secondary carbons of isooctane at 691.15 K, respectively. Four of the designated reactions were endothermic at this temperature. The other outcome of this study was that there was a direct relationship between the thermodynamic tendencies of the considered reactions and the ballistic performances (detonation velocities, detonation pressures, and specific impulses) of their nitrated products. The thermodynamic properties of heats of combustion and deflagration temperatures were calculated via empirical formulations based on the stoichiometry and some other structural parameters of the energetic materials. The results for nitromethane and the nitro-isooctane products were examined.
Rocznik
Strony
225--242
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Department of Metallurgical and Materials Engineering, Bulent Ecevit University, 67100 Zonguldak, Turkey
Bibliografia
  • [1] Sax, N. I.; Lewis, Sr., R. J. Hawley’s Condensed Chemical Dictionary. 11th ed., Van Nostrand Reinhold Co., New York 1987, p. 658; ISBN 9780442280970.
  • [2] Budavari, S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 11th ed., Merck and Co., Inc., Rahway, NJ 1989, p. 817; ISBN 9780911910285.
  • [3] Fire Protection Guide to Hazardous Materials. 12th ed., National Fire Protection Association, Quincy, MA 1997, pp. 325-362; ISBN 9780877654278.
  • [4] Auzmendi-Murua, I.; Bozzelli, J. W. Thermochemistry, Reaction Paths, and Kinetics on the Secondary Isooctane Radical Reaction with 3O2. Int. J. Chem. Kinet. 2014, 46(2): 71-103.
  • [5] Warren, W. C. Experimental Techniques for the Study of Liquid Monopropellant Combustion. MSc Thesis, Texas A&M University, 2012.
  • [6] Bush, K. C.; Germane, G. J.; Hess, G. L. Improved Utilization of Nitromethane as an Internal Combustion Engine Fuel. SAE Technical Paper 852130, 1985.
  • [7] Zhang, Y. X.; Bauer, S. H. The Gas-Phase Pyrolysis of 2,2-Dinitropropane: Shock-Tube Kinetics. J. Phys. Chem. A 2000, 104(6): 1217-1225.
  • [8] Steinberger, R. L.; Santavicca, D. A.; Bruno, B. A.; Daly, D. T. A Comparison of the Effects of Additives on Spark Ignited Combustion in a Laminar Flow System and in an Engine under Cold Start Conditions. SAE Technical Paper 2002-01-2834, 2002.
  • [9] Ma, H.; Kar, K.; Stone, R.; Raine, R.; Thorwarth, H. Analysis of Combustion in a Small Homogeneous Charge Compression Assisted Ignition Engine. Int. J. Engine Res. 2006, 7(3): 237-253.
  • [10] Cracknell, R. F.; Andrae, J. C. G.; McAllister, L. J.; Norton, M.; Walmsley, H. L. The Chemical Origin of Octane Sensitivity in Gasoline Fuels Containing Nitroalkanes. Combust. Flame 2009, 156(5): 1046-1052.
  • [11] Stewart, J. J. P. Optimization of Parameters for Semiempirical Methods. I Method. J. Comput. Chem. 1989, 10(2): 209-220.
  • [12] Young, D. C. Computational Chemistry. 1st ed., Wiley, New York 2001, pp. 19-21;ISBN 0471333689.
  • [13] Kohn, W.; Sham, L. J. Self-consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140(4A): A1133-A1138.
  • [14] Becke, A. D. Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38(6): 3098-3100.
  • [15] Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58(8): 1200-1211.
  • [16] Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37(2): 785-789.
  • [17] Fire Protection Guide to Hazardous Materials. 14th ed., National Fire Protection Association, Quincy, MA 2010, pp. 325-392; ISBN 9781616650414.
  • [18] Ebrahimi, A.; Karimi, P.; Akher, F. B.; Behazin, R.; Mostafavi, N. Investigation of the π-π Stacking Interactions without Direct Electrostatic Effects of Substituents: the Aromatic||Aromatic and Aromatic||Anti-aromatic Complexes. Mol. Phys. 2014, 112(7): 1047-1056.
  • [19] Mudedla, S. K.; Balamurugan, K.; Subramanian, V. Computational Study on the Interaction of Modified Nucleobases with Graphene and Doped Graphenes. J. Phys. Chem. C 2014, 118(29): 16165-16174.
  • [20] Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19(4): 553-566.
  • [21] Mottishaw, J. D.; Sun, H. Effects of Aromatic Trifluoromethylation, Fluorination, and Methylation on Intermolecular π-π Interactions. J. Phys. Chem. A 2013, 117(33): 7970-7979.
  • [22] Kamlet, M. J.; Jacobs, S. J. Chemistry of Detonations. I: A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48(1): 23-35.
  • [23] Keshavarz, M. H. Prediction Method for Specific Impulse Used as Performance Quantity for Explosives. Propellants Explos. Pyrotech. 2008, 33(5): 360-364.
  • [24] Keshavarz, M. H.; Motamedoshariati, H.; Moghayadnia, R.; Nazari, H. R.; Azarniamehraban, J. A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties, Part I. J. Hazard. Mater. 2009, 172(2-3): 1218-1228.
  • [25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT 2013.
  • [26] Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S. A DFT Study on Structural, Vibrational Properties, and Quasiparticle Band Structure of Solid Nitromethane. J. Chem. Phys. 2013, 138(18): (184705-1)-(184705-12).
  • [27] Trevino, S. F.; Prince, E.; Hubbard, C. R. Refinement of the Structure of Solid Nitromethane. J. Chem. Phys. 1980, 73(6): 2996-3000.
  • [28] Conroy, M. W. Density Functional Theory Studies of Energetic Materials. PhD Dissertation, University of South Florida, 2009.
  • [29] Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. Properties of Atoms in Molecules: Atomic Volumes. J. Am. Chem. Soc. 1987, 109(26): 7968-7979.
  • [30] Liu, H.; Zhao, J.; Wei, D.; Gong, Z. Structural and Vibrational Properties of Solid Nitromethane under High Pressure by Density Functional Theory. J. Chem. Phys. 2006, 124(12): (124501-1)-(124501-10).
  • [31] Baik, J.; Kim, J.; Majumdar, D.; Kim, K. S. Structures, Energetics, and Spectra of Fluoride-Water Clusters F−(H2O)n, n = 1-6: ab initio Study. J. Chem. Phys. 1999, 110(18): 9116-9127.
  • [32] Akhavan, J. The Chemistry of Explosives. 2nd ed., The Royal Society of Chemistry, UK 2004, pp. 78-80; ISBN 0854046402.
  • [33] Wang, G.; Gong, X.; Liu, Y.; Xiao, H. A Theoretical Investigation on the Structures, Densities, Detonation Properties, and Pyrolysis Mechanism of the Nitro Derivativesof Phenols. Int. J. Quantum Chem. 2010, 110(9): 1691-1701.
  • [34] Liu, Y.; Gong, X.; Wang, L.; Wang, G.; Xiao, H. Substituent Effects onthe Properties Related to Detonation Performance and Sensitivity for 2,2’,4,4’,6,6’-Hexanitroazobenzene Derivatives. J. Phys. Chem. A 2011, 115(9): 1754-1762.
  • [35] Akutsu, Y.; Tahara, S.-Y.; Tamura, M.; Yoshida, T. Calculations of Heats of Formation for Nitro Compounds by Semi-Empirical MO Methods and Molecular Mechanics. J. Energ. Mater. 1991, 9(3): 161-171.
  • [36] Dorsett, H.; White, A. Overview of Molecular Modelling and ab initio Molecular Orbital Methods Suitable for Use with Energetic Materials. Weapons Systems Division, Aeronautical and Maritime Research Laboratory, Australia, DSTOGD-0253, 2000.
  • [37] Sikder, A. K.; Maddala, G.; Agrawal, J. P.; Singh, H. Important Aspects of Behaviour of Organic Energetic Compounds: A Review. J. Hazard. Mater. 2001, 84(1): 1-26.
  • [38] Zhao, J.; Jin, B.; Peng, R.; Liu, Q.; Tan, B.; Chu, S. Synthesis and Characterization of a New Energetic Salt Based on Dinitramide. Z. Anorg. Allg. Chem. 2015, 641(15): 2630-2636.
  • [39] Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanisms of Spiro Nitramines. J. Phys. Chem. A 2006, 110(10): 3797-3807.
  • [40] Keshavarz, M. H.; Saatluo, B. E.; Hassanzadeh, A. A New Method for Predicting the Heats of Combustion of Polynitro Arene, Polynitro Heteroarene, Acyclic and Cyclic Nitramine, Nitrate Ester and Nitroaliphatic Compounds. J. Hazard. Mater. 2011, 185(2-3): 1086-1106.
  • [41] Lebedeva, N. D.; Ryadenko, V. L. R. Enthalpies of Formation of Nitroalkanes. Russ. J. Phys. Chem. (Engl. Transl.) 1973, 47: 1382.
  • [42] Keshavarz, M. H.; Moradi, S.; Saatluo, B. E.; Rahimi, H.; Madram, A. R. A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds. J. Therm. Anal. Calorim. 2013, 112(3): 1453-1463.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52b7db39-9ebd-48bc-8f76-a3a7982b55a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.