PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Exploring and visualizing spatial effects and patterns in ride-sourcing trip demand and characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The complex demand pattern of ride-sourcing remains to be a challenge to transportation modeling practitioners due to the infancy and the inherently dynamic nature of the ride-sourcing system. Spatial effects exploration and analysis protocols can provide informative insights on the underlying structure of demand and trip characteristics. Those protocols can be thought of as an opportunistic strategy to alleviate the complexity and help specifying the appropriate econometric models for the system. Spatial effects exploration is comparable to point pattern analysis, in which, signals from spatial entities, like census tracts, can be analyzed statistically to reveal whether a specific phenomenon respective signal distribution is a completely random process or if it follows some regular pattern. The results of such analysis help to explore the investigated phenomenon and conceptualize its causal forces. In this paper, we apply spatial pattern analysis edge methods integrated into a visual analytics framework to: (1) test the null hypothesis of system demand complete randomness; (2) further analyze and explain this demand in terms of the origin-destination (OD) flow and trips characteristics, i.e., length and duration; and (3) develop a pattern profile of the demand and trip characteristics to provide potential directions to modeling and predictive analytics approaches. This framework helps explain the ride-sourcing system demand and trip characteristics in space and time to fill the gap in integrating the system in multimodal transportation frameworks. We use the ride-sourcing trip dataset released from the City of Chicago, USA, for the year 2019 to showcase the proposed methods and their novelty in capturing such effects as well as explaining the underlying complexities in a streamlined workflow. The ride-sourcing demand hotspots were explored and identified in the city’s central business district. A novel method to capture and analyze the origin-destination flowlines was developed and implemented. Finally, a complementary trip characteristics pattern analysis was conducted to fully comprehend the system and validate the findings from the system demand points and OD-flowlines.
Rocznik
Strony
6--24
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr., wzory
Twórcy
  • Old Dominion University, 132B Kaufman Hall, Norfolk, VA 23529, Civil and Environmental Engineering
autor
  • Old Dominion University, 135 Kaufman Hall, Norfolk, VA 23529, Civil and Environmental Engineering
Bibliografia
  • Alemi, F. (2018). What Makes Travelers Use Ridehailing? Exploring the Latent Constructs behind the Adoption and Frequency of Use of Ridehailing Services, and Their Impacts on the Use of Other Travel Modes. (PhD Dissertation). University of California, Davis, Retrieved from https://escholarship.org/uc/item/1cm0j0vm
  • Alemi, F., & Rodier, C. J. (2016). Simulation of Ridesourcing Using Agent-Based Demand and Supply Regional Models: Potential Market Demand for First-Mile Transit Travel and Reduction in Vehicle Miles Traveled in the San Francisco Bay Area.
  • Anselin, L. (1988). Spatial Econometrics: Methods and Models.
  • Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  • Anselin, L. (1999). Spatial econometrics. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.3020&rep=rep1&type=pdf
  • Anselin, L. (2016). Local Spatial Autocorrelation Clusters. Retrieved from https://spatial.uchicago.edu/sites/spatial.uchicago.edu/files/6a_local_SA_r.pdf
  • Azimi, G., Rahimi, A., Asgari, H., & Jin, X. (2020). Role of Attitudes in Transit and Auto Users’ Mode Choice of Ridesourcing. Transportation Research Record, 2674(11), 1-16. https://doi.org/10.1177/0361198120941841
  • Bailey, T., & Gatrell, A. (1995). Interactive Spatial Data Analysis.
  • Basu, R., Araldo, A., Akkinepally, A. P., Nahmias Biran, B. H., Basak, K., Seshadri, R., ... Ben-Akiva, M. (2018). Automated Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Simulation Approach. Transportation Research Record, 2672(8), 608-618. https://doi.org/10.1177/0361198118758630
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Beron, K. J., & Vijverberg, W. P. M. (2004). Probit in a Spatial Context: A Monte Carlo Analysis. In L. Anselin, R. J. G. M. Florax, & S. J. Rey (Eds.), Advances in Spatial Econometrics: Methodology, Tools and Applications (pp. 169-195). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Boots, B. N., & Getls, A. (1988). Point Pattern Analysis. In G. I. Thrall (Ed.). Retrieved from https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=1013&context=rri-web-book
  • Castiglione, J., Cooper, D., Sana, B., Tischler, D., Chang, T., Erhardt, G. D., ... Mucci, A. (2018). TNCs & Congestion (10-2018). Retrieved from https://uknowledge.uky.edu/ce_reports/1
  • City of Chicago. (2021). Transportation Network Providers-Trips. Retrieved from: https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
  • Cordera, R., San udo, R., dell’Olio, L., & Ibeas, A . (2018). Trip distribution model for regional railway services considering spatial effects between stations. Transport Policy, 67, 77-84. https://doi.org/10.1016/j.tranpol.2018.01.016
  • Correa, D., Xie, K., & Ozbay, K. (2017). Exploring the Taxi and Uber Demands in New York City: An Empirical Analysis and Spatial Modeling. Paper presented at the Transportation Research Board’s 96th, Annual Meeting, Washington, D.C.
  • Diao, M., Kong, H., & Zhao, J. (2021). Impacts of transportation network companies on urban mobility. Nature Sustainability. https://doi.org/10.1038/s41893-020-00678-z
  • Dias, F. F., Lavieri, P. S., Garikapati, V. M., Astroza, S., Pendyala, R. M., & Bhat, C. R. (2017). A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation, 44(6), 1307-1323. https://doi.org/10.1007/s11116-017-9797-8
  • Erhardt, G. D., Mucci, R. A., Cooper, D., Sana, B., Chen, M., & Castiglione, J. (2021). Do transportation network companies increase or decrease transit ridership? Empirical evidence from San Francisco. Transportation. https://doi.org/10.1007/s11116-021-10178-4
  • Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., & Castiglione, J. (2019). Do transportation network companies decrease or increase congestion?. Science Advances, 5(5), eaau2670. https://doi.org/10.1126/sciadv.aau2670
  • Esri Inc. (2021a). Cluster and Outlier Analysis (Anselin Local Moran's I) (Spatial Statistics). Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/cluster-and-outlier-analysis-anselin-local-moran-s.htm
  • Esri Inc. (2021b). Hot Spot Analysis (Getis-Ord Gi*) (Spatial Statistics). Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/hot-spot-analysis.htm
  • Esri Inc. (2021c). How Cluster and Outlier Analysis (Anselin Local Moran's I) works. Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm#ESRI_SECTION1_C5005997CFA44DC7BCE05E19314EC613
  • Faghih, S., Shah, A., Wang, Z., Safikhani, A., & Kamga, C. (2020). Taxi and Mobility: Modeling Taxi Demand Using ARMA and Linear Regression. Procedia Computer Science, 177, 186-195. https://doi.org/10.1016/j.procs.2020.10.027
  • Florax, R. J. G. M., & Nijkamp, P. (2005). Misspecification in Linear Spatial Regression Models. In K. Kempf-Leonard (Ed.), Encyclopedia of Social Measurement (pp. 695-707). New York: Elsevier.
  • Getis, A., & Ord, J. K. (2010). The Analysis of Spatial Association by Use of Distance Statistics. In L. Anselin & S. J. Rey (Eds.), Perspectives on Spatial Data Analysis (pp. 127-145). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Hall, J. D., Palsson, C., & Price, J. (2018). Is Uber a substitute or complement for public transit?. Journal of Urban Economics, 108, 36-50. https://doi.org/10.1016/j.jue.2018.09.003
  • Henao, A. (2017). Impacts of ridesourcing - lyft and uber - on transportation including VMT, mode replacement, parking, and travel behavior. (Doctor of Philosophy). University of Colorado, Colorado Retrieved from ISSN 2520-2979 https://digital.auraria.edu/content/AA/00/00/60/55/00001/Henao_ucdenver_0765D_10823.pdf
  • Henao, A., Marshall, W. E., & Janson, B. (2019). Impacts of Ridesourcing on VMT, Parking Demand, Transportation Equity, and Travel Behavior (MPC 19-379). Retrieved from https://www.ugpti.org/resources/reports/downloads/mpc19-379.pdf
  • Heppenstall, A., & Crooks, A. (2019). Guest editorial for spatial agent-based models: current practices and future trends. GeoInformatica, 23(2), 163-167. https://doi.org/10.1007/s10707-019-00349-y
  • Hermawan, K. (2018). Transportation Network Companies’ (TNC) Impacts and Potential on Airport Access. (PhD dissertation). University of California, Irvine, Irvine. Retrieved from https://escholarship.org/uc/item/01m726rr
  • Jin, S. T., Kong, H., Wu, R., & Sui, D. Z. (2018). Ridesourcing, the sharing economy, and the future of cities. Cities, 76, 96-104. https://doi.org/10.1016/j.cities.2018.01.012
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374.
  • Kelleny, B., & Ishak, S. (2018, 25th-28th September 2018). An Agent-Based Modeling Approach for Shared-Use Mobility -A Proof of Concept Study. Paper presented at the MIPALCON, Stuttgart University.
  • Liu, X., Sun, L., Sun, Q., & Gao, G. (2020). Spatial Variation of Taxi Demand Using GPS Trajectories and POI Data. Journal of Advanced Transportation, 2020, 7621576. https://doi.org/10.1155/2020/7621576
  • Lopes, S. B., Brondino, N. C. M., & Silva, A. N. R. d. (2014). GIS-Based Analytical Tools for Transport Planning: Spatial Regression Models for Transportation Demand Forecast. ISPRS Int. J. Geo Inf., 3, 565-583.
  • Moran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1/2), 17-23. https://doi.org/10.2307/2332142
  • Oviedo, D., Granada, I., & Perez-Jaramillo, D. (2020). Ridesourcing and Travel Demand: Potential Effects of Transportation Network Companies in Bogota. Sustainability, 12(5). https://doi.org/10.3390/su12051732
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12, 2825-2830.
  • Rayle, L., Shaheen, S., & Chan, N. (2014). App-Based, On-Demand Ride Services: Comparing Taxi and Ridesourcing Trips and User Characteristics in San Francisco.
  • Reck, D. J., & Axhausen, K. W. (2020). Subsidized ridesourcing for the first/last mile: how valuable for whom?. European Journal of Transport and Infrastructure Research, 20(4), 59-77. https://doi.org/10.18757/ejtir.2020.20.4.5314
  • Roukouni, A., & Homem de Almeida Correia, G. (2020). Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review. Sustainability, 12(24). https://doi.org/10.3390/su122410504
  • Sanchez-Díaz, I., Holguín-Veras, J., & Wang, X. (2016). An exploratory analysis of spatial effects on freight trip attraction. Transportation, 43(1), 177-196. https://doi.org/10.1007/s11116-014-9570-1
  • Sapra, S. K. (2010). Robust vs. classical principal component analysis in the presence of outliers. Applied Economics Letters, 17(6), 519-523. https://doi.org/10.1080/13504850802046989
  • Serneels, S., & Verdonck, T. (2008). Principal component analysis for data containing outliers and missing elements. Computational Statistics & Data Analysis, 52(3), 1712-1727. https://doi.org/10.1016/j.csda.2007.05.024
  • Shaheen, S., Chan, N., Bansal, A., & Cohen, A. (2015). Shared Mobility: A Sustainability & Technologies Workshop: Definitions, Industry Developments, and Early Understanding.
  • Soria, J., & Stathopoulos, A. (2021). Investigating Socio-spatial Differences between Solo Ridehailing and Pooled Rides in Diverse Communities.
  • Sperling, J., Young, S., Garikapati, V., Duvall, A., & Beck, J. M. (2019). Mobility Data and Models Informing Smart Cities (NREL/TP-5400-70734). Retrieved from Denver https://www.nrel.gov/docs/fy20osti/70734.pdf
  • Tu, W., Cao, R., Yue, Y., Zhou, B., Li, Q., & Li, Q. (2018). Spatial variations in urban public ridership derived from GPS trajectories and smart card data. Journal of Transport Geography, 69, 45-57. https://doi.org/10.1016/j.jtrangeo.2018.04.013
  • Uber. (2017). Uber Hits 5 Billion Rides Milestone. Retrieved from https://www.uber.com/en-SG/blog/uber-hits-5-billion-rides-milestone/
  • Wang, C., Quddus, M. A., Ryley, T., Enoch, M., & Davison, L. (2012). Spatial models in transport: a review and assessment of methodological issues. Paper presented at the Transportation Research Board 91st Annual Meeting, Washington DC.
  • Winter, K., Cats, O., Martens, K., & van Arem, B. (2020). Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking. Transportation. https://doi.org/10.1007/s11116-020-10116-w
  • Wood, J., Dykes, J., & Slingsby, A. (2010). Visualisation of Origins, Destinations and Flows with OD Maps. The Cartographic Journal, 47, 117-129.
  • Yu, H., & Peng, Z.-R. (2019). Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression. Journal of Transport Geography, 75,147-163. https://doi.org/10.1016/j.jtrangeo.2019.01.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f5dda470-6bc2-4da3-aba7-5157f75d5559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.