PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a systematic review of the literature and the classification of fuzzy logic application in an infectious disease. Although the emergence of infectious diseases and their subsequent spread have a significant impact on global health and economics, a comprehensive literature evaluation of this topic has yet to be carried out. Thus, the current study encompasses the first systematic, identifiable and comprehensive academic literature evaluation and classification of the fuzzy logic methods in infectious diseases. 40 papers on this topic, which have been published from 2005 to 2019 and related to the human infectious diseases were evaluated and analyzed. The findings of this evaluation clearly show that the fuzzy logic methods are vastly used for diagnosis of diseases such as dengue fever, hepatitis and tuberculosis. The key fuzzy logic methods used for the infectious disease are the fuzzy inference system; the rule-based fuzzy logic, Adaptive Neuro-Fuzzy Inference System (ANFIS) and fuzzy cognitive map. Furthermore, the accuracy, sensitivity, specificity and the Receiver Operating Characteristic (ROC) curve were universally applied for a performance evaluation of the fuzzy logic techniques. This thesis will also address the various needs between the different industries, practitioners and researchers to encourage more research regarding the more overlooked areas, and it will conclude with several suggestions for the future infectious disease researches.
Twórcy
autor
  • School of Nursing and Midwifery, Health Information Technology Department, Saveh University of Medical Sciences, Iran
  • Halal Research Center of IRI, FDA, Tehran, Iran; Department of Information Technology, University of Human Development, Sulaymaniyah, Iraq
  • Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Computer Science and Engineering Department, University of Kurdistan Hewler, Erbil, Kurdistan, Iraq
  • School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, United Kingdom; University of Human Development, College of Science and Technology, Department of Information Technology, Sulaymaniyah, Iraq
autor
  • College of Computer Science and Engineering, Department of Information Systems and Technology, University of Jeddah, Jeddah, Saudi Arabia
autor
  • Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
Bibliografia
  • [1] National Institutes of Health. Understanding emerging and re-emerging infectious diseases. Biological sciences curriculum study NIH Curriculum Supplement Series. Bethesda, MD: National Institutes of Health; 2007.
  • [2] Neiderud Carl-Johan. How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol 2015;5(1):27060.
  • [3] Yang S, Wu J, Ding C, Cui Y, Zhou Y, Li Y, et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis 2017;17(7):716–25.
  • [4] Del Bianco R, Santos MSB, Ribeiro MCGG, Viso ATR, Carvalho V. Clinical aspects of influenza A (H1N1) in HIV-infected individuals in São Paulo during the pandemic of 2009. Braz J Infect Dis 2011;15(2):170–3.
  • [5] Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature 2008;451:990.
  • [6] Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 2015;347(6227). aaa4339.
  • [7] Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, et al. Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol 2007;35 (6):653–68.
  • [8] Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature 2004;430(6996):242–9.
  • [9] Hofmann B. The concept of disease—vague, complex, or just indefinable? Med Health Care Anal 2010;13(1):3–10.
  • [10] Seising R. From vagueness in medical thought to the foundations of fuzzy reasoning in medical diagnosis. Artif Intell Med 2006;38(3):237–56.
  • [11] Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P. Diseases diagnosis using fuzzy logic methods: a systematic and meta-analysis review. Comput Methods Programs Biomed 2018;161:145–72.
  • [12] John RI, Innocent PR. Modeling uncertainty in clinical diagnosis using fuzzy logic. Ieee Trans Syst Man Cybern Part B 2005;35(6):1340–50.
  • [13] Alawieh A, Sabra Z, Bizri AR, Davies C, White R, Zaraket FA. A computational model to monitor and predict trends in bacterial resistance. J Glob Antimicrob Resist 2015;3(3): 174–83.
  • [14] Zadeh LA. Is there a need for fuzzy logic? Inf Sci (NY) 2008;178(13):2751–79.
  • [15] Massad E, Burattini MN, Ortega NRS. Fuzzy Logic and measles vaccination: designing a control strategy. Int J Epidemiol 1999;28(3):550–7.
  • [16] Tuncer T, Dogan S, Abdar M, Ehsan Basiri M, Plawiak P. Face recognition with triangular fuzzy set-based local cross patterns in wavelet domain. Symmetry 2019;11(6):787.
  • [17] Vieira L, Rizol P, Nascimento LFC. Fuzzy logic and hospital admission due to respiratory diseases using estimated values by mathematical model. Cien Saude Colet 2019;24 (3):1083–90.
  • [18] Pereira CC, Machado CJ, Rodrigues Rdo N. [Profiles of multiple causes of death related to HIV/AIDS in the cities of Sao Paulo and Santos, Brazil, 2001]. Cad Saude Publica 2007;23(3):645–55.
  • [19] Reyna VF, Adam MB. Fuzzy-trace theory, risk communication, and product labeling in sexually transmitted diseases. Risk Anal 2003;23(2):325–42.
  • [20] Fuzzy logic and exponential smoothing for mapping implementation of dengue haemorrhagic fever in Surabaya. Mufid MR, Kusuma Saginta Putri NR, Fariza A, Mu'Arifin, editors. International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2018 - Proceedings. 2019.
  • [21] Ocampo-Duque W, Ferré-Huguet N, Domingo JL, Schuhmacher M. Assessing water quality in rivers with fuzzy inference systems: a case study. Environ Int 2006;32 (6):733–42.
  • [22] Karaboga D, Kaya E. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev 2018;1–31.
  • [23] Asemi A, Salim SSB, Shahamiri SR, Asemi A, Houshangi N. Adaptive neuro-fuzzy inference system for evaluating dysarthric automatic speech recognition (ASR) systems: a case study on MVML-based ASR. Soft comput 2018;1–16.
  • [24] Musayev A, Madatova S, Rustamov S. Mamdani-type fuzzy inference system for evaluation of tax potential. Recent developments and the new direction in soft-computing foundations and applications. Springer; 2018. p. 511–23.
  • [25] Dragovic I, Turajlic N, Pilcevic D, Petrovic B, Radojevic D. A boolean consistent fuzzy inference system for diagnosing diseases and its application for determining peritonitis likelihood. Comput Math Methods Med 2015;2015147947.
  • [26] Ibrisimovic MA, Karli G, Balkaya HE, Ibrisimovic M, Hukic M. A fuzzy model to predict risk of urinary tract infection. In: Badnjevic A, editor. Proceedings of the International Conference on Medical and Biological Engineering. 2017. p. 289–93. IFMBE Proceedings. 622017.
  • [27] Putra AA, Munir R, Ieee. Implementation of fuzzy inference system in children skin disease diagnosis application; 2015;365–70.
  • [28] Dogantekin E, Dogantekin A, Avci D. Automatic hepatitis diagnosis system based on Linear Discriminant Analysis and Adaptive Network based on Fuzzy Inference System. Expert Syst Appl 2009;36(8):11282–6.
  • [29] Faisal T, Taib MN, Ibrahim F. Adaptive Neuro-Fuzzy Inference System for diagnosis risk in dengue patients. Expert Syst Appl 2012;39(4):4483–95.
  • [30] Campisi G, Panzarella V, Matranga D, Caluino F, Pizzo G, Lo Muzio L, et al. Risk factors of oral candidosis: a twofold approach of study by fuzzy logic and traditional statistic. Arch Oral Biol 2008;53(4):388–97.
  • [31] Comparison of anfis neural network with several other ANNs and support vector machine for diagnosing hepatitis and thyroid diseases. Shariati S, Haghighi MM, editors. 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM). IEEE; 2010.
  • [32] Adriaenssens V, Baets BD, Goethals PLM, Pauw ND. Fuzzy rule-based models for decision support in ecosystem management. Sci Total Environ 2004;319(1):1–12.
  • [33] Paul AK, Shill PC, Rabin MRI, Murase K. Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl Intell 2018;48(7):1739–56.
  • [34] A grid-based HIV expert system. Sloot PMA, Boukhanovsky AV, Keulen W, Boucher CA, editors. 2005 IEEE International Symposium on Cluster Computing and the Grid, 2005.
  • [35] A rule-based fuzzy diagnostics decision support system for tuberculosis. Semogan ARC, Gerardo BD, Tanguilig III BT, de Castro JT, Cervantes LF, editors. 2011 Ninth International Conference on Software Engineering Research, Management and Applications. IEEE; 2011.
  • [36] Papageorgiou EI, Stylios C, Groumpos PP. Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int J Hum Comput Stud 2006;64(8):727–43.
  • [37] Xirogiannis G, Stefanou J, Glykas M. A fuzzy cognitive map approach to support urban design. Expert Syst Appl 2004;26 (2):257–68.
  • [38] Mei S, Zhu Y, Qiu X, Zhou X, Zu Z, Boukhanovsky AV, et al. Individual decision making can drive epidemics: a fuzzy cognitive map study. Ieee Trans Fuzzy Syst 2014;22(2): 264–73.
  • [39] Mago VK, Mehta R, Woolrych R, Papageorgiou EI. Supporting meningitis diagnosis amongst infants and children through the use of fuzzy cognitive mapping. BMC Med Inform Decis Mak 2012;12:98.
  • [40] Arji G, Safdari R, Rezaeizadeh H, Abbassian A, Mokhtaran M, Ayati MH. A systematic literature review and classification of knowledge discovery in traditional medicine. Comput Methods Programs Biomed 2019;168: 39–57.
  • [41] Yang C, Zou Y, Liu J, Mulligan KR. Predictive model evaluation for PHM. Int J Progn Health Manag 2014;5(2).
  • [42] Drummond C, Holte RC. Cost curves: an improved method for visualizing classifier performance. Mach Learn 2006;65 (1):95–130.
  • [43] Zhu W, Zeng N, Wang N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG Proceedings: Health Care and Life Sciences; 2010. 19:67.
  • [44] Leventhal GE, Hill AL, Nowak MA, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nat Commun 2015;6:6101.
  • [45] Fisman D. Seasonality of viral infections: mechanisms and unknowns. Clin Microbiol Infect 2012;18(10):946–54.
  • [46] Christensen H, Hickman M, Edmunds WJ, Trotter CL. Introducing vaccination against serogroup B meningococcal disease: an economic and mathematical modelling study of potential impact. Vaccine 2013;31 (23):2638–46.
  • [47] Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema T, et al. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med 2013;10(6):e1001467.
  • [48] Petkovic´ D, C´ojbašic Ž, Nikolic´ V. Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renewable Sustainable Energy Rev 2013;28:191–5.
  • [49] Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Health 2017;5:307.
  • [50] Cutler SJ, Fooks AR, Van Der Poel WH. Public health threat of new, reemerging, and neglected zoonoses in the industrialized world. Emerging Infect Dis 2010;16(1):1.
  • [51] Zeng D, Chen H, Tseng Ch, Larson C. Towards a national infectious disease information infrastructure a case study in West nile virus and botulism. Proceedings of the 2004 Annual National Conference on Digital Government Research Digital Government Society of North America 2004.
  • [52] Fichman RG, Kohli R, Krishnan R. Editorial overview—the role of information systems in healthcare: current research and future trends. Inf Syst Res 2011;22(3):419–28.
  • [53] Freifeld CC, Chunara R, Mekaru SR, Chan EH, Kass-Hout T, Iacucci AA, et al. Participatory epidemiology: use of mobile phones for community-based health reporting. PLoS Med 2010;7(12):e1000376.
  • [54] Larson HJ, Smith DM, Paterson P, Cumming M, Eckersberger E, Freifeld CC, et al. Measuring vaccine confidence: analysis of data obtained by a media surveillance system used to analyse public concerns about vaccines. Lancet Infect Dis 2013;13(7):606–13.
  • [55] Carroll LN, Au AP, Detwiler LT, Fu T-c, Painter IS, Abernethy NF. Visualization and analytics tools for infectious disease epidemiology: a systematic review. J Biomed Inform 2014;51:287–98.
  • [56] Mostafavi E, Haghdoost A, Khakifirouz S, Chinikar S. Spatial analysis of Crimean Congo hemorrhagic fever in Iran. Am J Trop Med Hyg 2013;89(6):1135–41.
  • [57] Evolution of a location-based online social network: analysis and models. Allamanis M, Scellato S, Mascolo C, editors. Proceedings of the 2012 Internet Measurement Conference. ACM; 2012.
  • [58] Buczak AL, Koshute PT, Babin SM, Feighner BH, Lewis SH. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med Inform Decis Mak 2012;12.
  • [59] Papageorgiou EI. A fuzzy inference map approach to cope with uncertainty in modeling medical knowledge and making decisions. Intell Decis Technol 2011;5(3):219–35.
  • [60] Ortega NR, Santos FS, Zanetta DM, Massad E. A fuzzy reed- frost model for epidemic spreading. Bull Math Biol 2008;70 (7):1925–36.
  • [61] Wickramaarachchi P, Perera S. A mathematical model with control to analyse the dynamics of dengue disease transmission in urban Colombo. J Natl Sci Found 2018;46 (1):41–9.
  • [62] Malmir B, Amini M, Chang SI. A medical decision support system for disease diagnosis under uncertainty. Expert Syst Appl 2017;88:95–108.
  • [63] Nilashi M, Ahmadi H, Shahmoradi L, Ibrahim O, Akbari E. A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. J Infect Public Health 2019;12(1):13–20.
  • [64] Chaira T. Accurate segmentation of leukocyte in blood cell images using Atanassov's intuitionistic fuzzy and interval Type II fuzzy set theory. Micron 2014;61:1–8.
  • [65] Traulsen I, Krieter J. Assessing airborne transmission of foot and mouth disease using fuzzy logic. Expert Syst Appl 2012;39(5):5071–7.
  • [66] Nkamgang OT, Tchiotsop D, Fotsin HB, Talla PK, Louis Dorr V, Wolf D. Automating the clinical stools exam using image processing integrated in an expert system. Inform Med Unlocked 2019;15.
  • [67] Azeez D, Ali MAM, Gan KB, Saiboon I. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. SpringerPlus 2013;2(1):1–10.
  • [68] Sanaei F, Kazemi MAA, Ahmadi H, Ieee. Designing and implementation of Fuzzy Expert system for diagnosis of Herpes Zoster; 2015;1032–40.
  • [69] de Bruin JS, Adlassnig KP, Blacky A, Koller W. Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic. Artif Intell Med 2016;69:33–41.
  • [70] Putra IKGD, Prihatini PM. Fuzzy expert system for tropical infectious disease by certainty factor. Telkomnika 2012;10 (4):825–36.
  • [71] Davidson VJ, Ryks J, Fazil A. Fuzzy risk assessment tool for microbial hazards in food systems. Fuzzy Sets Syst 2006;157 (9):1201–10.
  • [72] Raghav G, Khatter H, Ieee. Intelligent curation system for blood infections using fuzzy inference system in android; 2018.
  • [73] Jayasundara SD, Perera SS, Malavige GN, Jayasinghe S. Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue. BMC Syst Biol 2017;11(1):34.
  • [74] Premaratne MK, Perera SSN, Malavige GN, Jayasinghe S. Mathematical modelling of immune parameters in the evolution of severe dengue. Comput Math Methods Med 2017;2017:1–9.
  • [75] Khodaei-Mehr J, Tangestanizadeh S, Vatankhah R, Sharifi M. Optimal neuro-fuzzy control of hepatitis C virus integrated by genetic algorithm. IET Syst Biol 2018;12 (4):154–61.
  • [76] Üncü Ü. Evaluation of pulmonary function tests by using fuzzy logic theory. J Med Syst 2010;34(3):241–50.
  • [77] Oluwagbemi O, Oluwagbemi F, Abimbola O. Ebinformatics: ebola fuzzy informatics systems on the diagnosis, prediction and recommendation of appropriate treatments for Ebola virus disease (EVD). Inform Med Unlocked 2016;2:12–37.
  • [78] Uzoka F-ME, Obot O, Barker K, Osuji J. An experimental comparison of fuzzy logic and analytic hierarchy process for medical decision support systems. Comput Methods Programs Biomed 2011;103(1):10–27.
  • [79] Sloot PMA, Boukhanovsky AV, Keulen W, Tirado-Ramos A, Boucher CA. A Grid-based HIV expert system. J Clin Monit Comput 2005;19(4-5):263–78.
  • [80] Mithra KS, Sam Emmanuel WR. GFNN: gaussian-Fuzzy- Neural network for diagnosis of tuberculosis using sputum smear microscopic images. J King Saud Univ - Comput Inf Sci 2018. http://dx.doi.org/10.1016/j.jksuci.2018.08.004. In press.
  • [81] Hossain MS, Ahmed F, Fatema Tuj J, Andersson K. A belief rule based expert system to assess tuberculosis under uncertainty. J Med Syst 2017;41(3).
  • [82] Langarizadeh M, Khajehpour E, Khajehpour H, Farokhnia M, Eftekhari M. A fuzzy expert system for distinguishing between bacterial and aseptic meningitis. Iran J Med Phys 2015;12(1):1–6.
  • [83] Omisore MO, Samuel OW, Atajeromavwo EJ. A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis. Appl Comput Inform 2017;13(1):27–37.
  • [84] Papageorgiou EI, Froelich W. Application of evolutionary fuzzy cognitive maps for prediction of pulmonary infections. Ieee Trans Inf Technol Biomed 2011;16(1):143–9.
  • [85] Mago VK, Mehta R, Woolrych R, Papageorgiou EI. Supporting meningitis diagnosis amongst infants and children through the use of fuzzy cognitive mapping. BMC Med Inform Decis Mak 2012;12(1):98.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ff443b67-7e56-4b64-925c-193d17cb3583
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.