Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The rapidly developing field of quantum computing and the ongoing lack of widely available quantum computers create the need for scientists to build their simulators. However, mathematical simulation of such circuits usually ignores many aspects and problems found in real quantum systems. In this article, the authors describe a quantum bit emulator based on FPGA integrated circuits. In this case, FPGA technology provides real-time massive parallelism of the modeled physical phenomena. The modeled QUBIT is represented using a Bloch sphere. Its quantum state is set and modified only by precise pulses of an electrical signal, and with the help of similar pulses, it manifests its current state in real time. The constructed QUBIT was additionally equipped with decoherence mechanisms and with circuits that intentionally respond to internal and external noises that distort its current quantum state. This article presents and discusses how such a physically built emulator works.
Wydawca
Czasopismo
Rocznik
Tom
Strony
499--519
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow, Faculty of Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- SONOVERO R&D, www.sonovero-rd.pl, Warsaw, Poland
autor
- SONOVERO R&D, www.sonovero-rd.pl, Warsaw, Poland
Bibliografia
- [1] Aminian M., Saeedi M., Saheb Zamani M., Sedighi M.: FPGA-Based Circuit Model Emulation of Quantum Algorithms. In: 2008 IEEE Computer Society Annual Symposium on VLSI, pp. 399–404, 2008. doi: 10.1109/ISVLSI.2008.43.
- [2] Burgholzer L., Bauer H., Wille R.: Hybrid Schr¨odinger-Feynman Simulation of Quantum Circuits With Decision Diagrams. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2021. doi: 10.1109/ qce52317.2021.00037.
- [3] Chapeau-Blondeau F.: Modeling and Simulation of a Quantum Thermal Noise on the Qubit, Fluctuation and Noise Letters, vol. 21(06), 2022. doi: 10.1142/ s0219477522500602.
- [4] Cheng S., Cao C., Zhang C., Liu Y., Hou S.Y., Xu P., Zeng B.: Simulating noisy quantum circuits with matrix product density operators, Physical Review Research, vol. 3(2), 2021. doi: 10.1103/physrevresearch.3.023005.
- [5] DE10-Lite Board. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=218&No=1021. Accessed: 14.4.2024.
- [6] Fujishima M., Inai K., Kitasho T., Hoh K.: 75- qubit Quantum Computing Emulator. In: Extended Abstracts of the 2003 International Conference on Solid State Devices and Materials, pp. 406–407, 2003. doi: 10.7567/SSDM.2003.P1-4.
- [7] Grurl T., Fuß J., Hillmich S., Burgholzer L., Wille R.: Arrays vs. Decision Diagrams: A Case Study on Quantum Circuit Simulators. In: 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), pp. 176–181, 2020. doi: 10.1109/ISMVL49045.2020.000-9.
- [8] Hillmich S., Markov I.L., Wille R.: Just Like the Real Thing: Fast Weak Simulation of Quantum Computation. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020. doi: 10.1109/dac18072.2020.9218555.
- [9] IBM Qiskit Noise Models, https: / / qiskit.github.io / qiskit - aer / apidocs / aer noise.html#quantum-error-functions. Accessed: 3.07.2024.
- [10] IBM Quantum Learning – Composer, https://quantum- computing.ibm.com/ composer/files/new. Accessed: 14.4.2024.
- [11] Negovetic G., Perkowski M., Lukac M., Buller A.: Evolving Quantum Circuits and an FPGA-based Quantum Computing Emulator. 2002. https://api. semanticscholar.org/CorpusID:15995633.
- [12] Quantum AI team and collaborators: qsim, 2020. doi: 10.5281/zenodo.4023103.
- [13] Quirk: Quantum Circuit Simulator, https://algassert.com/quirk. Accessed: 14.4.2024.
- [14] The Quantum L¨and: Quantum Circuit Simulator, https://thequantumlaend.de/ frontend/designer.php. Accessed: 14.4.2024.
- [15] Wei K., Niwase R., Amano H., Yamaguchi Y., Miyoshi T.: A state vector quantum simulator working on FPGAs with extensible SATA storage. In: 2023 International Conference on Field Programmable Technology (ICFPT), pp. 272–273, 2023. doi: 10.1109/ICFPT59805.2023.00041.
- [16] Wikipedia: Bloch sphere. https://en.wikipedia.org/wiki/Bloch sphere.
- [17] Xie T., Zhao Z., Xu S., Kong X., Yang Z., Wang M., Wang Y., Shi F., Du J.: 99.92%-Fidelity cnot Gates in Solids by Noise Filtering, Physical Review Letters, vol. 130, 030601, 2023. doi: 10.1103/PhysRevLett.130.030601.
- [18] Zulehner A., Wille R.: Advanced Simulation of Quantum Computations, arXiv, 2018. doi: 10.48550/arXiv.1707.00865.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-042ff6d5-23c3-415d-93cc-fbb1bdfb1dc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.