PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation Characteristics of a NOx-Free Mining Explosive Based on Sensitised Mixtures of Low Concentration Hydrogen Peroxide and Fuel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining explosives based on ammonium nitrate(V) are safe and effective, however, the risk of NOx fume production during blasting is still present. In 2013, a project to eliminate NOx fumes from blasting began and hydrogen peroxide was chosen to replace ammonium nitrate(V) as the oxidiser. Previous work in this area demonstrated that hydrogen peroxide/fuel-based mixtures were able to detonate, provided that they are initiated under a situation of high confinement and also using hydrogen peroxide at relatively high concentrations. In contrast, a comprehensive study was conducted to determine the detonation properties of hydrogen peroxide/fuel-based mixtures that used hydrogen peroxide at lower concentrations (below 50 wt.%), detonated in unconfined conditions and used void sensitisation to achieve an efficient detonation reaction. This article presents the results of the influence of the density, water content, critical diameter and type of void sensitisation on the velocity of detonation (VOD) of hydrogen peroxide/ fuel-based explosive mixtures. The results indicate that the mixtures can achieve a different VOD which depends on the size of the sensitising voids and more importantly, the mixtures behave as non-ideal explosive, similarly to ammonium nitrate-based explosives, but with the advantage of being a NOx-free explosive.
Rocznik
Strony
759--774
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • University of Queensland, School of Mechanical and Mining Engineering, St. Lucia QLD 4072, Australia
autor
  • University of Queensland, School of Mechanical and Mining Engineering, St. Lucia QLD 4072, Australia
Bibliografia
  • [1] Hagan, T. N.; Vance, W. E. The Determination of Two Performance Parameters of Ammonium Nitrate/Fuel Explosives Using the Ballistic Mortar. Int. J. Rock Mech. Min. Sci. 1968, 5: 129-142;
  • [2] Grubb, R. J. Some Factors Influencing the Explosive Properties of Ammonium Nitrate-Fuel Mixtures. International Symposium on Mining Research, Missouri, USA 1961, 1: 15-27.
  • [3] Yancik, J. J. Some Physical, Chemical, and Thermohydrodynamic Parameters of Explosive Ammonium Nitrate-fuel Oil Mixtures. Thesis, University of Missouri, USA 1960.
  • [4] Mortensen, K. S.; Udy, L. L. Column of Blasting Agent of Controlled Density. Patent US 3617401, 1971.
  • [5] Cook, M. Explosives – a Survey of Technical Advances. Ind. Eng. Chem. 1968, 60(7): 44-55.
  • [6] Bruzewski, R. F.; Clark, G. B.; Yancik, J.; Kohler, K. M. An Investigation of Some Basic Performance Parameters of Ammonium Nitrate Explosives. Bulletin, University of Missouri School of Mines and Metallurgy, Rolla, Missouri, Technical Series 97, 1958.
  • [7] Rowland III, J. H.; Mainiero, R.; Hurd, Jr. D. A. Factors Affecting Fumes Production of an Emulsion and ANFO/Emulsion Blends. Proc. 27th Annual Conference on Explosives and Blasting Technique, Orlando, USA 2001, 133-141.
  • [8] Management of Oxides of Nitrogen in Open Cut Blasting. Queensland Guidance Note QGN 20 v3, 2011.
  • [9] AEISG Code of Practice, Prevention and Management of Blast Generated NOx Gases in Surface Blasting. Australian Explosives Industry and Safety Group Inc., 2011.
  • [10] Shanley, E. S.; Greenspan, F. P. Highly Concentrated Hydrogen Peroxide. Ind. Eng. Chem. 1947, 39(12): 1536-1543.
  • [11] Baker, A. W.; Groves, W. Hydrogen Peroxide Explosives, Patent US 3047441, 1962.
  • [12] Bouillet, E.; Colery, J-C.; Declerck, C.; Ledoux, P. Process for the Manufacture of Explosive Cartridges, and Explosives Cartridges Obtained Using the Said Process. Patent US 4942800, 1990.
  • [13] Araos, M.; Onederra, I. Detonation Characteristics of Alternative Mining Explosives Based on Hydrogen Peroxide. 7th World Conference on Explosives and Blasting, Moscow, Russia 2013, 182-186.
  • [14] Araos, M.; Onederra, I. Development of a Novel Mining Explosive Formulation to Eliminate Nitrogen Oxide Fumes. Mining Technology 2015, 124(1): 16-23.
  • [15] Price, D. Contrasting Patterns in the Behaviour of High Explosives. 11th International Symposium on Combustion, Berkeley, USA 1966, 693-702.
  • [16] Araos, M. Influence of Different Parameters in the VOD of Gassed Bulk Explosives. Proc. 28th Annual Symposium on Explosives and Blasting Research, Las Vegas, USA 2002, 293-306.
  • [17] Hattori, K.; Fukatsu, Y.; Sakai, H. Effect of the Size of Glass Microballoons on the Detonation Velocity of Emulsion Explosives. J. Ind. Explos. Soc. Jpn. 1982, 43: 295-309.
  • [18] Cooper, J.; Leiper, G. A. Void Size Dependence of the Steady Detonation Properties of Emulsion Explosives. J. Energ. Mater. 1989, 7(4-5): 405-417.
  • [19] Information Provided by QCell Australia, May 2014.
  • [20] Field, J. E., Hot Spot Ignition Mechanisms for Explosives. Acc. Chem. Res. 1992, 25(11): 489-496.
  • [21] Mader, C. L. Initiation of Detonation by the Interaction of Shocks with Density Discontinuities. Phys. Fluids 1965, 8(10): 1811-1816.
  • [22] Mader, C. L., Kershner, J. D., The Three-dimensional Hydrodynamic Hot-spot Model. Proc. 8th Symposium (Int.) on Detonation, Albuquerque, USA 1985, 42-51.
  • [23] Menikoff, R. Hot Sspot Formation from Shock Reflections. Shock Waves 2011, 21(2): 141-148.
  • [24] Frey, R. B. Cavity Collapse in Energetic Materials. Proc. 8th Symposium (Int.) on Detonation, Albuquerque, USA 1985, 68-80.
  • [25] Mader, C. L.; Kershner, J. D. The Heterogeneous Explosive Reaction Zone. Proc. 9th Symposium (Int.) on Detonation, Portland, USA 1989, 1, 693-700.
  • [26] Allum, J. M.; Cartwight, M.; Cooper, J. Variation of Emulsion Explosive Performance Parameters with Water Content. 28th Int. Annu. Conf. ICT, Karlsruhe, Germany 1997, 34.1-34.14.
  • [27] Cranney, D. H.; Lawrence, L. D.; Jackson, M. M. Low Density Watergel Explosive Composition. Patent US 5490887, 1996.
  • [28] Bruckman, H. J.; Guillet, J. E. Theoretical Calculations of Hot-spot Initiation in Explosives. Can. J. Chem. 1968, 46(20): 3221-3228.
  • [29] Jaffe, I. Determination of the Critical Diameter of Explosive Materials. ARS J. 1962, 32(7): 1060-1065.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b61a9628-f80c-46e2-93e0-ab7159fa86d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.