PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distortion of air gap magnetic field caused by the rotor eccentricity contributes to the electromechanical coupling vibration of the brushless DC (BLDC) permanent magnet in-wheel motor (PMIWM) in electric vehicles (EV). The comfort of the BLDC in-wheel motor drive (IWMD) EV is seriously affected. To deeply investigate the electromechanical coupling vibration of the PMIWM under air gap eccentricity, the PMIWM, tyre and road excitation are analyzed first. The influence of air gap eccentricity on air gap magnetic density is investigated. The coupling law of the air gap and the unbalanced magnetic force (UMF) is studied. The coupling characteristics of eccentricity rate, air gap magnetic density, UMF, phase current and vibration acceleration are verified on the test bench in the laboratory. The mechanism of the electro-mechanical coupling vibration of the BLDC PMIWM under air gap static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE) is revealed. DE and HE deteriorate the vibration acceleration amplitude, which contributes the electromechanical coupling vibration of the PMIWM. The research results provide a solid foundation for the vibration and noise suppression of the PMIWM in distributed drive EV.
Rocznik
Strony
851--862
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
  • Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Chongqing University of Technology), Ministry of Education, Chongqing 400054, P. R. China
autor
  • School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
autor
  • Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
Bibliografia
  • [1] M. Ehsani, Y. Gao, and A. Emadi, “Modern Electric, Hybrid Electric, and Fuel Cell Vehicles-Fundamentals. Theory and De-sign. Second Edition”, US:CRC Press (2010).
  • [2] Y. Huang, H. Wang, and A. Khajepour, “A review of component sizing and power management strategy of Hybrid vehicles”, Renewable and sustainable energy review 96, 132‒144 (2018).
  • [3] Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back propagation neural network inverse system”, Bull. Pol. Ac.: Tech. 66(6), 1‒12 (2018).
  • [4] Q. Song, H. Wan, Y. Mi, and S. Ye, “Optimum control strategy of drive torque for pure electric vehicles during acceleration”, Journal of Jiangsu University (Natural Science Edition) 38(1), 1‒6 (2017).
  • [5] Y. Huang, S. Fard, M. Khazraee, and M. Khazraee, “An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles”, Energy 127, 318‒327 (2017).
  • [6] H. Jiang, C. Li, Ma, S. S. Ding, and C. Zhang, “Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy”, Journal of Jiangsu University (Natural Science Edition) 38(5), 497‒502 (2017).
  • [7] X. Sun, Y. Cai, C. Yuan, S. Wang, and L. Chen, “Fuzzy sliding mode control for the vehicle height and leveling adjustment system of an electronic air suspension”, Chinese Journal of Mechanical Engineering 31(25), 1‒13 (2018).
  • [8] H. Kang, Y. Son, and G. Kim, “The Noise and Vibration Analysis of BLDC Motor Due to Asymmetrical Permanent-Magnet Overhang Effects”, IEEE Transactions on Industry Applications, 44(5) 1569‒1577 (2018).
  • [9] Y. Huang, A. Khajepour, T. Zhu, and H. Ging, “A supervisory energy-saving controller for a novel anti-idling system of service vehicles”, IEEE/ASME Transactions on Mechatronics22(2),1037‒1046 (2017).
  • [10] T. Chen, X. Xu, L. Chen, H. Jiang, Y. Cai, and Y. Li, “Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles”, Mechanical Systems and Signal Processing 101(2), 377‒388 (2018).
  • [11] Y. Li, H. Deng, X. Xu, and W. Wang, “Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink”, IET Intelligent Transport Systems 13(1),115‒123 (2019).
  • [12] C. Yin, J. Zhang, and S. Wang, Influence of damper indicator diagram area on vehicle ride comfort”, Journal of Jiangsu University (Natural Science Edition) 38( 6), 645‒651 (2017).
  • [13] Z. Liu, J. Huang, and S. He, “Diagnosis of air-gap eccentricity and partial demagnetisation of an interior permanent magnet synchronous motor based on inverse transient complex inductance vector theory”, IET Electric Power Applications 12(8), 1166‒1175 (2018).
  • [14] S. Mohamed, J. Antonio, C. Marques, Y. Khaled, and G. Adel, “The Use of the Modified Pronys Method for Rotor Speed Estimation in Squirrel-Cage Induction Motors”, IEEE Transactions on Industry Applications 52(3), 2194‒2202 (2016).
  • [15] X. Diao and H. Zhu, “Survey of decoupling control strategies for bearingless synchronous reluctance motor”, Journal of Jiangsu University (Natural Science Edition) 38(6), 687‒695 (2017 ).
  • [16] N. Elkasabgy, A. Eastman, and G. Dawson, “Detection of broker bar in the cage rotor on an induction machine”, IEEE Transactions on Industry Applications 28(1), 165‒171 (1992).
  • [17] W. Deng, S. Zuo, F. Lin, S. Wu, and Y. Mao, “Modeling and Analysis of Unbalanced Moment for an Axial-Flux in-Wheel Motor with Eccentricity”, Transactions of China Electrotechnical Society 32(13),153‒161 (2017).
  • [18] O. Oladapo and S. Paul, “Barendse, M.A.K. Influence of Ro-tor Topologies and Cogging Torque Minimization Techniques in the Detection of Static Eccentricities in Axial-Flux Permanent-Magnet Machine”, IEEE Transactions on Industry Applications 53(1), 161‒170 (2017).
  • [19] O. Mansour and M. Maryam, “Unified Modeling Technique for Axially Uniform and Nonuniform Eccentricity Faults in Three-Phase Squirrel Cage Induction Motors”, IEEE Transactions on Industrial Electronics 65(7), 5292‒5301 (2018).
  • [20] A. Rahideh and T. Korakianitis, “Analytical Open-Circuit Magnetic Field Distribution of Slotless Brushless Permanent-Magnet Machines With Rotor Eccentricity”, IEEE Transactions on Mag-netics 47(12), 4791‒4808 (2011).
  • [21] P. Jun-Kyu and H. Jin, “Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors”, IEEE Transactions on Industrial Electronics 63(3), 1771‒1780 (2016).
  • [22] Y. Li and Z. Zhu, “Cogging Torque and Unbalanced Magnetic Force Prediction in PM Machines With Axial-Varying Eccentricity by Superposition Method”, IEEE Transactions on Magnetics53(11), 1‒4(2017).
  • [23] T. Samad, J. Pezhman, and B. Nicola, “Analytical Modeling of No-Load Eccentric Slotted Surface-Mounted PM Machines, Cogging Torque and Radial Force”, IEEE Transactions on Magnetics 53(12), 1‒1 (2017).
  • [24] J. Song, K. Kang, C. Kang, and G. Jang, “Cogging Torque and Unbalanced Magnetic Pull Due to Simultaneous Existence of Dynamic and Static Eccentricities and Uneven Magnetization in Permanent Magnet Motors”, IEEE Transactions on Magnetics53(3),1‒9 (2017).
  • [25] X. Sun, Y. Shen, S. Wang, G. Lei, Z. Yang, and S. Han, “Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model”, IEEE/ASME Transactions on Mechatronics 23(2), 747‒757 (2018).
  • [26] Y. Li, Q. Lu, Z. Zhu, D. Wu, and G. Li, “Superposition Method for Cogging Torque Prediction in Permanent Magnet Machines With Rotor Eccentricity”, IEEE Transactions on Magnetics52(6), 1‒1 (2016).
  • [27] Y. Luo and D. Tan, “Study on the Dynamics of the In-Wheel Motor System”, IEEE Transactions on Vehicular Technology61(8), 3510‒3518 (2012).
  • [28] Y. Mao, S. Zuo, and F. Lin, “Lector mechanical coupled vibration characteristics of electric wheel under torque ripple”, Journal of Jilin University (Engineering and Technology Edition) 47(03), 908‒916 (2017).
  • [29] S. Zuo, D. Li, Y. Mao, W. Deng, and X. Wu, “Modeling and validation on longitudinal vibration characteristics of electric wheel sys-tem considering electromechanical coupling”, Transactions of the Chinese Society of Agricultural Engineering 33(22), 61‒68 (2017).
  • [30] Y. Li, B. Zhang, and X. Xu, “Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling”, Transactions of the Canadian Society for Mechanical Engineering 42(3), 286‒297 (2018).
  • [31] C. Li and L. Wu, “Sliding mode control for synchronization of fractional permanent magnet synchronous motors with finite time”, Optik-International Journal for Light and Electron Optics127(6), 3329‒3332 (2016).
  • [32] H. Guo, Z. Yin, D. Cao, H. Chen, and C. Lv, “A Review of Es-timation for Vehicle Tire-Road Interactions Toward Automated Driving”, IEEE Transactions on Systems Man & Cybernetics Systems 49(1), 14‒30 (2018).
  • [33] L. Zhang and H. Wang, “Shear stress analysis of asphalt pavement based on transverse contact stress”, Journal of Jiangsu University (Natural Science Edition) 39(02), 236‒241 (2018).
  • [34] B. Xu, C. Xiang, Y. Qin, P. Ding, and M. Dong, “Semi-Active Vibration Control for in-Wheel Switched Reluctance Motor Driven Electric Vehicle With Dynamic Vibration Absorbing Struc-tures, Concept and Validation”, IEEE Journals & Magazines 6, 60274‒60285 (2018).
  • [35] S. Zuo, L. Gao, X. Wu C. Ma, and J. Shen, “The analysis of electromagnetic force in permanent magnet synchronous motors with rotor eccentricity in electric vehicles”, Journal of Jiamusi University 32(02), 166‒170 (2014).
  • [36] C. Ma, S. Zuo, L. He, S. Meng, and Q. Sun, “Analytical Model of permanent Magnet synchronous Motor considering slot and high order harmonics. Journal of Vibration”, Measurement and Diagnosis 35(02), 231‒237 (2015).
  • [37] X. Zhu, Z. Xiang, C. Zhang, L. Quan, Y. Du, and W. Gu, “Co-Reduction of Torque Ripple for Outer Rotor Flux-Switching PM Motor Using Systematic Multi-Level Design and Control Schemes”, IEEE Transactions on Industrial Electronics 64(2), 1102‒1112 (2018).
  • [38] J. Zhu, S. Li, D. Song, Q. Han, and G. Li, “Performance parameter analysis of a low speed AFPMSG with stator coreless”, Journal of Jiangsu University (Natural Science Edition) 39(04), 445‒452 (2018).
  • [39] X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan, “Design and Multicondition Comparison of Two Outer-Rotor Flux-Switching Permanent-Magnet Motors for In-Wheel Traction Applications”, IEEE Transactions on Industrial Electronics 64(8), 6137‒6148 (2017).
  • [40] C. Ma, S. Zuo, S. Meng, and Q. Sun, “Analytical Calculation of Electromagnetic Torque in Permanent Magnet Synchronous Motor for Electric Vehicles”, Journal of Vibration, Measurement and Diagnosis 32(05),756‒761 (2012).
  • [41] Y. Zhou and Z. Zhu, “Torque Density and Magnet Usage Efficiency Enhancement of Sandwiched Switched Flux Permanent Magnet Machines Using V-Shaped Magnets”, IEEE Transactions on Magnetics 49(7), 3834‒3837 (2013).
  • [42] K. Kang, J. Song, C. Kang, S. Sung, and G. Jang, “Real-Time Detection of the Dynamic Eccentricity in Permanent-Magnet Synchronous Motors by Monitoring Speed and Back EMF Induced in an Additional Winding”, IEEE Transactions on Indus-trial Electronics 64(9), 7191‒7200 (2017).
  • [43] X. Tang, X. Hu, W. Yang, and H. Yu. “Novel Torsional Vibration Modeling and Assessment of a Power-Split Hybrid Electric Vehicle Equipped with a Dual Mass Flywheel”, IEEE Transactions on Vehicular Technology 67,1990‒2000 (2018).
  • [44] J. Wen, C. Song, Y. Fu, and P. Guo, “Rotor structure optimization of permanent magnet synchronous generator built-in type U”, Journal of Jiangsu University(Natural Science Edition) 39(02), 194‒198 (2018).
  • [45] Z. Song, Y. Yu, F. Chai, and Y. Tang, “Radial Force and Vibration Calculation for Modular Permanent Magnet Synchronous Ma-chine With Symmetrical and Asymmetrical Open-Circuit Faults”, IEEE Transactions on Magnetics 54(11), 1‒5 (2018).
  • [46] T. Ishikawa, M. Yamada, and N. Kurita, “Design of Magnet Arrangement in Interior Permanent Magnet Synchronous Motor by Response Surface Methodology in Consideration of Torque and Vibration”, IEEE Transactions on Magnetics 47(5), 1290‒1293 (2011).
  • [47] M. Tsuda, T. Kojima, T. Yagai, and T. Hamajima, “Vibration Characteristics in Magnetic Levitation Type Seismic Isolation Device Composed of Multiple HTS Bulks and Permanent Magnets”, IEEE Transactions on Applied Superconductivity 17(2), 2059‒2062 (2007).
  • [48] F. Wang, X. Xu, Z. Fang, and L. Chen, “Study of the influence mechanism of pitch deviation on cylindrical helical gear meshing stiffness and vibration noise”, Automotive Engineering Research Institute 9(9), 1‒9 (2017).
  • [49] R. Tang, Z. Song, S. Yu, X. Hao, and W. Wang, “Study on source of vibration and acoustic noise of permanent magnet machines by inverter”, Electric Machines and Control 14(03), 12‒17 (2010).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0fdc11b-f4c1-40f0-bf91-71b45523e2fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.