PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Clothing Size on Thermal Insulation – A Pilot Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal insulation may be influenced by the size of clothing and thus the volume of air gaps. The aim of this study was to determine the relationship between the size of outer wear clothing, and thus the indirect fit (the volume and size of air gaps), and thermal insulation in static and dynamic conditions. A set of underwear and two types of outerwear for workers of the energy sector and the chemical industry were selected for the study. Results showed that the value of thermal insulation (regardless of the type of outerwear) first increased with increasing clothing size.
Słowa kluczowe
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland
  • Central Institute for Labour Protection – National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland
  • Central Institute for Labour Protection – National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland
autor
  • Central Institute for Labour Protection – National Research Institute, Czerniakowska St. 16, 00-701 Warsaw, Poland
Bibliografia
  • 1. Špelić I, Rogale D, Mihelić–Bogdanić A (2019) The laboratory investigation of the clothing microclimatic layers in accordance with the volume quantification and qualification. J Text Inst 110(1):26-36. https://doi.org/10.1080/00405000.2018.1462087
  • 2. Lu Y, Song G, Li J, Wang F (2015) The impact of air gap on thermal performance of protective clothing against hot water spray. Text Res J 85(7):709-721. https://doi.org/10.1177/0040517514553875
  • 3. Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015a) Effect of garment properties on air gap thickness and the contact area distribution. Text Res J 85(18):1907–1918. https://doi.org/10.1177/0040517514559582
  • 4. Lee Y, Hong K, Hong SA (2007) 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Appl Ergon 38(3):349-355. https://doi.org/10.1016/j.apergo.2006.04.017
  • 5. Mert E, Psikuta A, Arévalo M, Charbonnier C, Luible-Bär C, Bueno MA, Rossi RM (2018) A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking. Measurement 117:153-164. https://doi.org/10.1016/j.measurement.2017.11.042
  • 6. Mert E, Böhnisch S, Psikuta A, Bueno MA, Rossi RM (2015) Determination of the air gap thickness underneath the garment for lower body using 3D body scanning. In 6th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland. https://www.3dbody.tech/cap/papers/2015/15114_20mert.pdf
  • 7. Song G (2007) Clothing air gap layers and thermal protective performance in single layer garment. J Ind Text 36(3):193-205.
  • 8. Chianta MA, Munroe LR (1964) Flamecontact studies. Journal of Heat Transfer 86(3):449-456.
  • 9. Deng M, Wang Y, Li P (2018) Effect of air gaps characteristics on thermal protective performance of firefighters’ clothing: A review. Int J Cloth Sci 30(2):246-267.
  • 10. Benisek L, Phillips WA (1981) Protective clothing fabrics: Part II. Against convective heat (open-flame) hazards. Text Res J 51(3):191-196.
  • 11. Torvi DA, Douglas DJ, Faulkner B (1999). Influence of air gaps on benchtop test results of flame resistant fabrics. J Fire Prot Eng 10(1):1-12. https://doi.org/10.1177/104239159901000101
  • 12. Sawcyn CMJ (2003) Heat Transfer Model of Horizontal Air Gaps in Bench Top Testing of Thermal Protective Fabrics. Master’s thesis, Saskatoon: University of Saskatchewan
  • 13. Talukdar P, Torvi DA, Simonson CJ, Sawcyn CM (2010) Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. Int J Heat Mass Transf 53(1/3):526-539. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.041
  • 14. Sawcyn CMJ, Torvi DA (2009) Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics. Text Res J 79(7):632-644.
  • 15. Song G, Chitrphiromsri P, Ding D (2008) Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergon 14(1):89-106. https://doi.org/10.1080/10803548.2008.11076752
  • 16. Torvi DA, Threlfall TG (2006) Heat transfer model of flame resistant fabrics during cooling after exposure to fire. Fire Technology 42(1):27-48. https://doi.org/10.1007/s10694-005-3733-8
  • 17. Mah T, Song G (2010) Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps using Three-dimensional Body Scanning for Women’s Protective Clothing. Text Res J 80(13):1317-1329. https://doi.org/10.1177/0040517509358795
  • 18. Lu Y, Song G, Li J (2013) A Novel Approach for Fit Analysis of Protective Clothing Using Three-Dimensional Body Scanning. Proceeding of the 4th International Conference on 3D Body Scanning Technologies. Long Beach CA, USA. https://www.3dbody.tech/cap/papers/2013/13327_13lu.pdf
  • 19. Daanen H, Hatcher K, Havenith (2005) Determination of clothing microclimate volume. Elsevier Ergonomics Book Series. 3:361-365. https://doi.org/10.1016/S1572-347X(05)80057-6
  • 20. Daanen H, Psikuta A (2018) 3D body scanning ch.10. In: Nayak R, Rajiv P (ed) Automation in Garment Manufacturing, The Textile Institute Book Series, Woodhead Publishing, pp 237-252. https://doi.org/10.1016/B978-0-08-101211-6.00010-0
  • 21. EN ISO 13688:2013 Protective clothing –General requirements
  • 22. EN ISO 11611:2015 Protective clothing for use in welding and allied processes Protective clothing for use in welding and allied processes
  • 23. EN ISO 11612:2015 Protective clothing — Clothing to protect against heat and flame — Minimum performance requirements
  • 24. EN 1149-5:2018 Protective clothing –Electrostatic properties – Part 5: Material performance and design requirements
  • 25. EN 13034:2005+A1:2009 Protective clothing against liquid chemicals. Performance requirements for chemical protective clothing offering limited protective performance against liquid chemicals (Type 6 and Type PB [6. equipment)
  • 26. EN ISO 14116:2015 Protective clothing — Protection against flame — Limited flame spread materials, material assemblies and clothing
  • 27. IEC 61482-2:2018 Live working - Protective clothing against the thermal hazards of an electric arc - Part 2: Requirements
  • 28. Młynarczyk M, Havenith G, Léonard J, Martins R, Hodder S (2018) Inter-laboratory proficiency tests in measuring thermal insulation and evaporative resistance of clothing using the Newton-type thermal manikin. Text Res J 88(4):453-466. https://doi.org/10.1177/0040517516681957
  • 29. Młynarczyk M (2020) Characteristics of Specialised Firefighter Clothing Used in Poland – the Thermal Parameters. Fibres Text East Eur 28,1(139):65-70. doi:10.5604/01.3001.0013.5860
  • 30. Młynarczyk M (2019) Influence of Air Velocity on the Total Thermal Insulation of Different Types of Clothing. Fibres Text East Eur 27,6(138):75-80. doi:10.5604/01.3001.0013.447
  • 31. EN ISO 20685-1:2019-01 3-D scanning methodologies for internationally compatible anthropometric databases - Part 1: Evaluation protocol for body dimensions extracted from 3-D body scans
  • 32. Młynarczyk M, Jankowski J, Orysiak J (2022) Objętość przestrzeni powietrznych a rozmiar odzieży przy wykorzystaniu techniki skanowania 3D – studium przypadku (in Polish), Bezpieczeństwo Pracy. Nauka i Praktyka. 8:17-21. doi: 10.54215/BP.2022.08.21.Mlynarczyk
  • 33. EN 342:2018-01 Protective clothing. Ensembles and garments for protection against cold
  • 34. EN ISO 15831:2004 Physiological effects — Measurement of thermal insulation by means of a thermal manikin
  • 35. McQuerry M, DenHartog E, Barker R (2018) Analysis of air gap volume in structural firefighter turnout suit constructions in relation to heat loss. Text Res J 88(21):2475-2484. https://doi.org/10.1177/0040517517723024
  • 36. Ke Y, Wang F (2020) An Exploration of Relationships among Thermal Insulation, Area Factor and Air Gap of Male Chinese Ethnic Costumes. Polymers 12(6):1302. https://doi.org/10.3390/polym12061302
  • 37. Chen Y, Fan J, Qian X, Zhang W (2004) Effect of garment fit on thermal insulation and evaporative resistance. Text Res J 74:742–748.
  • 38. Li J, Zhang Z, Wang, Y (2013) The relationship between air gap sizes and clothing heat transfer performance. J Text Inst 104:1327–1336.
  • 39. Zhang Z, Li J (2011) Volume of air gaps under clothing and its related thermal effects. J Fiber Bioeng Inform 4(2):137-144. doi:10.3993/jfbi06201104
  • 40. Mert E, Böhnisch S, Psikuta A, Bueno MA, Rossi RM (2016) Contribution of garment fit and style to thermal comfort at the lower body. Int J Biometeorol 60(12):1995-2004. https://doi.org/10.1007/s00484-016-1258-0
  • 41. Lu Y, Song G, Li J (2014) A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning. Appl Ergon 45:1439–1446.
  • 42. Mert E, Psikuta A, Bueno MA, Rossi RM (2015) Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. Int J Biometeorol 59:1701–1710. https://doi.org/10.1007/s00484-015-0978-x
  • 43. Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015b) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition Text Res J 85(20):2196-2207.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-25f12251-0716-4730-b349-fcc6e71c35e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.