PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A survey on syntactic pattern recognition methods in bioinformatics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Formal tools and models of syntactic pattern recognition which are used in bioinformatics are introduced and characterized in the paper. They include, among others: stochastic (string) grammars and automata, hidden Markov models, programmed grammars, attributed grammars, stochastic tree grammars, Tree Adjoining Grammars (TAGs), algebraic dynamic programming, NLC- and NCE-type graph grammars, and algebraic graph transformation systems. The survey of applications of these formal tools and models in bioinformatics is presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--42
Opis fizyczny
Bibliogr. 212 poz., rys., tab., wykr.
Twórcy
  • Jagiellonian University, Information Technology Systems Department, Cracow 30-348, ul. prof. St. Lojasiewicza 4, Poland
Bibliografia
  • [1] Abe N., Mamitsuka H.: Predicting protein secondary structure using stochastictree grammars,Machine Learning, vol. 29, pp. 275–301, 1997.
  • [2] Agarwal S., Vaz C., Bhattacharya A., Srinivasan A.: Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM), BMC Bioinformatics, vol. 11 (Suppl 1): S29, 2010. doi: 10.1186/1471-2105-11-s1-s29.
  • [3] Ahola V., Aittokallio T., Uusipaikka E., Vihinen M.: Efficient estimation of emission probabilities in profile hidden Markov models, Bioinformatics, vol. 19, pp. 2359–2368, 2003. doi: 10.1093/bioinformatics/btg328
  • [4] Alves J.M.P., de Oliveira A.L., Sandberg T.O.M., Moreno-Gallego J.L.,de Toledo M.A.F., de Moura E.M.M., Oliveira L.S.,et al.: GenSeed-HMM: A tool for progressive assembly using profile HMMs as seeds and its application in alpavirinae viral discovery from metagenomic data, Frontiers in Microbiology, vol. 7, 269, 2016. doi: 10.3389/fmicb.2016.00269.
  • [5] Anderson J.W.J., Tataru P., Staines J., Hein J., Lyngsø R.: Evolving stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics, vol. 13, 78, 2012. doi: 10.1186/1471-2105-13-78.
  • [6] Bagos P.G., Liakopoulos T.D., Hamodrakas S.J.: Evaluation of methods for predicting the topology of β-barrel outer membrane proteins and a consensus prediction method, BMC Bioinformatics, vol. 6, 7, 2005. doi: 10.1186/1471-2105-6-7.
  • [7] Bagos P.G., Liakopoulos T.D., Spyropoulos I.C., Hamodrakas S.J.: A hidden Markov model method, capable of predicting and discriminating β-barrel outer membrane proteins, BMC Bioinformatics, vol. 5, 29, 2004. doi: 10.1186/1471-2105-5-29.
  • [8] Bagos P.G., Liakopoulos T.D., Spyropoulos I.C., Hamodrakas S.J.: PRED-TMBB: a web server for predicting the topology of β-barrel outermembrane proteins, Nucleic Acids Research, vol. 32, pp. W400–W404, 2004. doi: 10.1093/nar/gkh417.
  • [9] Baldi P., Brunak S.: Bioinformatics: The Machine Learning Approach, MIT Press, Cambridge, MA, 2001.
  • [10] Baldi P., Chauvin Y., Hunkapillar T., McClure M.: Hidden Markov models of biological primary sequence information, Proceedings of the National Academy of Sciences of the USA, vol. 91, pp. 1059–1063, 1994. doi: 10.1073/pnas.91.3.1059.
  • [11] Baum L.E., Petrie T.: Statistical inference for probabilistic functions of finite state Markov chains, The Annals of Mathematical Statistics, vol. 37, pp. 1554–1563, 1966. doi: 10.1214/aoms/1177699147.
  • [12] Bellman R.: Dynamic Programming, Princeton University Press, Princeton, NJ, 1957. doi: 10.2307/j.ctv1nxcw0f.
  • [13] Bentolila S.: A grammar describing ‘biological binding operators’ to modelgene regulation, Biochimie, vol. 78, pp. 335–350, 1996. doi: 10.1016/0300-9084(96)84766-3.
  • [14] Berkemer S.J., zu Siederdissen Honer C., Stadler P.F.: Algebraic dynamic programming on trees, Algorithms, vol. 10, 135, 2017. doi: 10.3390/a10040135.
  • [15] Bernardes J.S., Davila A.M.R., Costa V.S., Zaverucha G.: Improving model construction of profile HMMs for remote homology detection through structural alignment, BMC Bioinformatics, vol. 8, 435, 2007. doi: 10.1186/1471-2105-8-435.
  • [16] Bhargava B.K., Fu K.: Stochastic tree systems for syntactic pattern recognition. In: Proceedings of Twelfth Annual Allerton Conference on Circuit and SystemTheory, pp. 278–287, Monticello, IL, 1974.
  • [17] Booth T.L., Thompson R.A.: Applying probability measures to abstract languages, IEEE Trans Computers, vol. 22, pp. 442–450, 1973. doi: 10.1109/t-c.1973.223746.
  • [18] Brainerd W.S.: Tree generating regular systems, Information and Control, vol. 14, pp. 217–231, 1969. doi: 10.1016/s0019-9958(69)90065-5.
  • [19] Bralley P.: An introduction to molecular linguistics, BioScience, vol. 46,pp. 146–153, 1996. doi: 10.2307/1312817.
  • [20] Brandenburg F.J.: On the complexity of the membership problem of graph grammars. In: Proceedings of the Workshop on Graphtheoretic Concepts in Computer Science, pp. 40–49, Osnabr ̈uck, Germany, 1983.
  • [21] Brejov a B., Brown D.G., Vinar T.: The most probable annotation problem in HMMs and its application to bioinformatics, Journal of Computer and System Sciences, vol. 73, pp. 1060–1077, 2007. doi: 10.1016/j.jcss.2007.03.011.
  • [22] Brendel V., Busse H.G.: Genome structure described by formal languages, Nucleic Acids Research, vol. 12, pp. 2561–2568, 1984.
  • [23] Brown M., Wilson C.: RNA pseudoknot modeling using intersections of stochastic context free grammars with applications to database search. In: Proceedings of 1996 Pacific Symposium on Biocomputing, pp. 109–125, Hawaii, 1996.
  • [24] Brown M.P.: Small subunit ribosomal RNA modeling using stochastic context-free grammars. In: Proceedings of 8th International Conference on Intelligent Systems for Molecular Biology, pp. 57–66, San Diego, CA, USA, 2000.
  • [25] Bunke H., Sanfeliu A. (eds.):Syntactic and Structural Pattern Recognition – Theory and Applications, World Scientific, Singapore, 1990. doi: 10.1142/0580.
  • [26] Bystroff C., Krogh A.: Hidden Markov models for prediction of protein features. In: M. Zaki, C. Bystroff (eds.), Protein Structure Prediction. Methods in Molecular Biology, pp. 173–198, Humana Press, New Jersey, 2008. doi: 10.1007/978-1-59745-574-97.
  • [27] Bystroff C., Shao Y., Yuan X.: Five hierarchical levels of sequence-structure correlation in proteins, Applied Bioinformatics, vol. 3, pp. 97–104, 2004. doi: 10.2165/00822942-200403020-00004.
  • [28] Cai L., Malmberg R., Wu Y.: Stochastic modeling of RNA pseudoknotted structures: A grammatical approach, Bioinformatics, vol. 19, pp. i66–i73, 2003.doi: 10.1093/bioinformatics/btg1007.
  • [29] Cai Y., Lux M.W., Adam L., Peccoud J.: Modeling structure-function relation-ships in synthetic DNA sequences using attribute grammars, PLoS Computational Biology, vol. 5, e1000529, 2009. doi: 10.1371/journal.pcbi.1000529.
  • [30] Chiang D., Joshi A.K., Searls D.B.: Grammatical representations of macro-molecular structure, Journal of Computational Biology, vol. 13, pp. 1077–1100,2006. doi: 10.1089/cmb.2006.13.1077.
  • [31] Collado-Vides J.: A transformational-grammar approach to the study of the regulation of gene expression, Journal of Theoretical Biology, vol. 136, pp. 403–425,1989. doi: 10.1016/s0022-5193(89)80156-0.
  • [32] Collado-Vides J.: A syntactic representation of units of genetic information – A syntax of units of genetic information, Journal of Theoretical Biology, vol 148,pp. 401–429, 1991. doi: 10.1016/s0022-5193(05)80245-0.
  • [33] Collado-Vides J.: Grammatical model of the regulation of gene expression, Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 9405–9409, 1992. doi: 10.1073/pnas.89.20.9405.
  • [34] Corn S.: Explicit definitions and linguistics dominoes. In: J.F. Hart, S. Takasu (eds.), Systems and Computer Science, University of Toronto Press, Toronto, 1967.
  • [35] Coste F.: Learning the language of biological sequences. In: J. Heinz, J.M. Sempere (eds.), Topics in Grammatical Inference, pp. 215–247, Springer, 2016.doi: 10.1007/978-3-662-48395-48.
  • [36] Datta S., Mukhopadhyay S.: A composite method based on formal grammarand DNA structural features in detecting human polymerase II promoter region, PLoS ONE, vol. 8, e54843, 2013. doi: 10.1371/journal.pone.0054843.
  • [37] Dill K.E., Lucas A., Hockenmaier J., Huang L., Chiang D., Joshi A.K.: Computational linguistics: A new tool for exploring biopolymer structures andstatistical mechanics, Polymer, vol. 48, pp. 4289–4300, 2007. doi: 10.1016/j.polymer.2007.05.018.
  • [38] Ding L., Samad A., Xue X., Huang X., Malmberg R.L., Cai L.: Stochastick-tree grammar and its application in biomolecular structure modeling, Lecture Notes in Computer Science, vol. 8370, pp. 308–322, 2014. doi: 10.1007/978-3-319-04921-225.
  • [39] Do C.B., Mahabhashyam M.S., Brudno M., Batzoglou S.: ProbCons: Probabilistic consistency-based multiple sequence alignment, Genome Research, vol. 15, pp. 330–340, 2005. doi: 10.1101/gr.2821705.
  • [40] Do C.B., Woods D.A., Batzoglou S.: CONTRA fold: RNA secondary structure prediction without physics-based models, Bioinformatics, vol. 22, pp. e90–e98,2006. doi: 10.1093/bioinformatics/btl246.
  • [41] Dong S., Searls D.B.: Gene structure prediction by linguistic methods,Genomics, vol. 23, pp. 540–551, 1994. doi: 10.1006/geno.1994.1541.
  • [42] Dowell R.D., Eddy S.R.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics, vol. 5, 71, 2004. doi: 10.1186/1471-2105-5-71.
  • [43] Duda R.O., Hart P.E., Stork D.G.: Pattern Classification, Wiley, NewYork, 2001.
  • [44] Durbin R., Eddy S.R., Krogh A., Mitchison G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, UK, 2002.
  • [45] Dyrka W., Nebel J.C.: A stochastic context free grammar based frameworkfor analysis of protein sequences, BMC Bioinformatics, vol. 10, 323, 2009.doi: 10.1186/1471-2105-10-323.
  • [46] Dyrka W., Nebel J.C., Kotulska M.: Probabilistic grammatical model of proteinlanguage and its application to helix-helix contact site classification, Algorithmsfor Molecular Biology, vol. 8, 31, 2013.
  • [47] Eddy S.R.: Profile hidden Markov models, Bioinformatics, vol. 14, pp. 755–763,1998. doi: 10.1093/bioinformatics/14.9.755.
  • [48] Eddy S.R.: What is a hidden Markov model? Nature Biotechnology, vol. 22,pp. 1315–1316, 2004. doi: 10.1038/nbt1004-1315.
  • [49] Eggers D., zu Siederdissen Honer H.C., Stadler P.F.: Accuracy of RNA structure prediction depends on the pseudoknot grammar, Lecture Notes in ComputerScience, vol. 13523, pp. 20–31, 2022. doi: 10.1007/978-3-031-21175-13.
  • [50] Ehrig H., Ehrig K., Prange U., Taentzer G.: Fundamentals of Algebraic Graph Transformation, Springer, Berlin-Heidelberg, 2006.
  • [51] Ehrig H., Engels G., Kreowski H.J., Rozenberg G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools, World Scientific, Singapore, 1999. doi: 10.1142/9789812815149.
  • [52] Ehrig H., Kreowski H. J.: Pushout-properties: An analysis of gluing constructions for graphs, Mathematische Nachrichten, vol. 91, pp. 135–149, 1979. doi: 10.1002/mana.19790910111.
  • [53] Ehrig H., Pfender M., Schneider H.J.: Graph grammars: An algebraic approach. In: Proceedings of 14th Annual IEEE Symposium on Switching and Automata Theory, pp. 167–180, 1973. doi: 10.1109/swat.1973.11.
  • [54] Flasiński M.: Parsing of edNLC-graph grammars for scene analysis, Pattern Recognition, vol. 21, pp. 623–629, 1988. doi: 10.1016/0031-3203(88)90034-9.
  • [55] Flasiński M.: Distorted pattern analysis with the help of Node Label Controlled graph languages, Pattern Recognition, vol. 23, pp. 765–774, 1990. doi: 10.1016/0031-3203(90)90099-7.
  • [56] Flasiński M.: On the parsing of deterministic graph languages for syntactic pattern recognition, Pattern Recognition, vol. 26, pp. 1–16, 1993. doi: 10.1016/0031-3203(93)90083-9.
  • [57] Flasiński M.: Use of graph grammars for the description of mechanical parts, Computer-Aided Design, vol. 27, pp. 403–433, 1995. doi: 10.1016 / 0010 -4485(94)00015-6.
  • [58] Flasiński M.: Power properties of NLC graph grammars with a polynomial membership problem, Theoretical Computer Science, vol. 201, pp. 189–231, 1998.doi: 10.1016/s0304-3975(97)00212-0.
  • [59] Flasiński M.: Inference of parsable graph grammars for syntactic pattern recognition, Fundamenta Informaticae, vol. 80, pp. 379–413, 2007.
  • [60] Flasiński M.: Introduction to Artificial Intelligence, Springer International, Switzerland, 2016. doi: 10.1007/978-3-319-40022-8.
  • [61] Flasiński M.: Syntactic Pattern Recognition, World Scientific, New Jersey-London-Singapore, 2019.
  • [62] Flasiński M., Jurek J.: Dynamically programmed automata for quasi contexts ensitive languages as a tool for inference support in pattern recognition-basedreal-time control expert systems, Pattern Recognition, vol. 32, pp. 671–690, 1999.doi: 10.1016/s0031-3203(98)00115-0.
  • [63] Flasiński M., Kotulski L.: On the use of graph grammars for the control of a distributed software allocation, The Computer Journal, vol. 35,pp. A165–A175 1992.
  • [64] Flasiński M., Lewicki G.: The convergent method of constructing polynomial discriminant functions for pattern recognition, Pattern Recognition, vol. 24,pp. 1009–1015, 1991. doi: 10.1016/0031-3203(91)90098-p.
  • [65] Flasiński M., Myśliński S.: On the use of graph parsing for recognition of isolated hand postures of Polish Sign Language, Pattern Recognition, vol. 43,pp. 2249–2264, 2010. doi: 10.1016/j.patcog.2010.01.004.
  • [66] Flasiński M., Jurek J., Peszek T.: Multi-derivational parsing of vague languages – the new paradigm of syntactic pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, 2024. doi: 10.1109/tpami.2024.3367245.
  • [67] Fonzo de V., Aluffi-Pentini F., Parisi V.: Hidden Markov models in bioinformatics, Current Bioinformatics, vol. 2, pp. 49–61, 2007.doi: 10.2174/157489307779314348.
  • [68] Fu K.S.: Stochastic tree languages and their application to picture processing. In: P.R. Krishnaiah (ed.), Multivariate Analysis V, North-Holland, Amsterdam, 1980.
  • [69] Fu K.S.: Stochastic automata, stochastic languages and pattern recognition, Journal of Cybernetics, vol. 1, pp. 31–49, 1971.
  • [70] Fu K.S.: Syntactic Pattern Recognition and Applications, Prentice Hall, Englewood Cliffs, 1982.
  • [71] Fu K.S., Huang T.: Stochastic grammars and languages, International Journalof Computer and Information Sciences, vol. 1, pp. 135–170, 1972. doi: 10.1007/bf00995736.
  • [72] Fu K.S., Li T.: On stochastic automata and languages, Information Sciences, vol. 1, pp. 403–419, 1969. doi: 10.1016/0020-0255(69)90024-3.
  • [73] Gallego A.J., Lopez D., Calera-Rubio J.: Grammatical inference of directed acyclic graph languages with polynomial time complexity, Journal of Computerand System Sciences, vol. 95, pp. 19–34, 2018. doi: 10.1016/j.jcss.2017.12.002.
  • [74] Gecseg F., Steinby M.: Tree Automata, Akademiai Kiado, Budapest, 1984.
  • [75] Ghouila A., Florent I., Guerfali F.Z., Terrapon N., Laouini D., Yahia S.B., Gascuel O., et al.: Identification of Divergent Protein Domains by Combining HMM-HMM Comparisons and Co-Occurrence Detection, PLoS ONE, vol. 9, e95275, 2014. doi: 10.1371/journal.pone.0095275.
  • [76] Giegerich R.:A declarative approach to the development of dynamic programming algorithms, applied to RNA folding, Tech. rep., Bielefeld University, Germany, 1998.
  • [77] Giegerich R.: Explaining and controlling ambiguity in dynamic programming, Lecture Notes in Computer Science, vol. 1848, pp. 46–59, 2000. doi: 10.1007/3-540-45123-46.
  • [78] Giegerich R.: A systematic approach to dynamic programming in bioinformatics, Bioinformatics, vol. 16(8), pp. 665–677, 2000. doi: 10.1093/bioinformatics/16.8.665.
  • [79] Giegerich R., Meyer C.: Algebraic Dynamic Programming, Lecture Notes in Computer Science, vol. 2422, pp. 349–364, 2002. doi: 10.1007/3-540-45719-424.
  • [80] Giegerich R., Touzet H.: Modeling dynamic programming problems over sequences and trees with inverse coupled rewrite systems, Algorithms, vol. 7,pp. 62–144, 2014. doi: 10.3390/a7010062.
  • [81] Giegerich R., Meyer C., Steffen P.: Towards a discipline of dynamic programming, Lecture Notes in Informatics, vol. P-147, pp. 3–44, 2002.
  • [82] Giegerich R., Meyer C., Steffen P.: A discipline of dynamic programming oversequence data, Science of Computer Programming, vol. 51, pp. 215–263, 2004. doi: 10.1016/j.scico.2003.12.005.
  • [83] Golab T., Ledley R.S., Rotolo L.S.: FIDAC: Film input to digital automatic computer, Pattern Recognition, vol. 3, pp. 123–156, 1971. doi: 10.1016/0031-3203(71)90035-5.
  • [84] Gollery M. (ed.): Handbook of Hidden Markov Models in Bioinformatics, Chapman and Hall / CRC, Boca Raton, FL, 2008. doi: 10.1201/9781420011807.
  • [85] Grenander U.:Syntax-controlled probabilities, Tech. rep., Brown University, Providence, R.I., 1967.
  • [86] Harmanci A.O., Sharma G., Mathews D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign, BMC Bioinformatics, vol. 8, 130, 2007.
  • [87] Haussler D., Krogh A., Mian I.S., Sj ̈oander K.: Protein modeling using hidden Markov models: analysis of globins. In: Proceedings of 26th Annual Hawaii International Conference on Systems Sciences, pp. 792–802, 1993.
  • [88] Head T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bulletin of Mathematical Biology, vol. 49, pp. 737–759, 1987. doi: 10.1016/s0092-8240(87)90018-8.
  • [89] Holmes I., Rubin G.M.: Pairwise RNA structure comparison with stochasticc ontext-free grammars. In: Proceedings of 2002 Pacific Symposium on Biocomputing, pp. 163–174, Hawaii, 2002.
  • [90] Horan K., Shelton C., Girke T.: Predicting conserved protein motifs with Sub-HMMs, BMC Bioinformatics, vol. 11, 205, 2010. doi: 10.1186/1471-2105-11-205.
  • [91] Hsu B.Y., Wong T.K.F., Hon W.K., Liu X., Lam T.W., Yiu S.M.: A Local Structural Prediction Algorithm for RNA Triple Helix Structure. In: A. Ngom, E. Formenti, J.K. Hao, X.M. Zhao, T. van Laarhoven (eds.), Pattern Recognitionin Bioinformatics. PRIB 2013. Lecture Notes in Computer Science, vol. 7968, pp. 102–113, 2013. doi: 10.1007/978-3-642-39159-010.
  • [92] Huang T., Fu K.S.: Stochastic syntactic analysis for programmed grammars and syntactic pattern recognition, Computer Graphics and Image Processing, vol. 1, pp. 257–283, 1972. doi: 10.1016/s0146-664x(72)80018-2.
  • [93] Janssen S., Giegerich R.: Faster computation of exact RNA shape probabilities, Bioinformatics, vol. 26, pp. 632–639, 2010. doi: 10.1093/bioinformatics/btq014.
  • [94] Janssens D., Rozenberg G.: On the structure of node-label-controlled graphlanguages, Information Sciences, vol. 20, pp. 191–216, 1980. doi: 10.1016/0020-0255(80)90038-9.
  • [95] Janssens D., Rozenberg G.: Restrictions, extensions, and variations of NLC grammars, Information Sciences, vol. 20, pp. 217–244, 1980. doi: 10.1016/0020-0255(80)90039-0.
  • [96] Janssens D., Rozenberg G.: Graph grammars with neighbourhood-controlled embedding, Theoretical Computer Science, vol. 21, pp. 55–74, 1982.doi: 10.1016/0304-3975(82)90088-3.
  • [97] Janssens D., Rozenberg G., Verraedt R.: On sequential and parallel noderewriting graph grammars, Computer Graphics and Image Processing, vol. 18, pp. 279–304, 1982. doi: 10.1016/0146-664x(82)90036-3.
  • [98] Johnson L.S., Eddy S.R., Portugaly L.: Hidden Markov model speed heuristicand iterative HMM search procedure, BMC Bioinformatics, vol. 11, 431, 2010.doi: 10.1186/1471-2105-11-431.
  • [99] Jonyer I., Holder L.B., Cook D.J.: MDL-based context-free graph grammar induction and applications, International Journal on Artificial Intelligence Tools, vol. 13, pp. 65–79, 2004. doi: 10.1142/s0218213004001429.
  • [100] Joshi A.K.: How much context-sensitivity is necessary for characterizing structural descriptions – Tree Adjoining Grammars. In: D. Dowty, et al.(eds.), Natural Language Processing – Theoretical, Computational and Psychological Perspective, Cambridge University Press, New York, NY, 1985.
  • [101] Joshi A.K., Levy L.S., Takahashi M.: Tree adjunct grammars, Journal of Computer and System Sciences, vol. 10, pp. 136–163, 1975. doi: 10.1016/s0022-0000(75)80019-5.
  • [102] Joshi A.K., Schabes Y.: Tree adjoining grammars. In: G. Rozenberg, A. Salomaa(eds.), Handbook of Formal Languages – III, pp. 69–123, Springer, New York,NY, 1997. doi: 10.1007/978-3-642-59126-62.
  • [103] Kall L., Krogh A., Sonnhammer E.: An HMM posterior decoder for sequence feature prediction that includes homology information, Bioinformatics, vol. 21,pp. i251–i257, 2005. doi: 10.1093/bioinformatics/bti1014.
  • [104] Karplus K., Barrett C., Hughey R.: Hidden Markov models for detecting remote protein homologies, Bioinformatics, vol. 14, pp. 846–856, 1998. doi: 10.1093/bioinformatics/14.10.846.
  • [105] Kato Y., Akutsu T., Seki H.: A grammatical approach to RNA-RNA interaction prediction, Pattern Recognition, vol. 42, pp. 531–538, 2009. doi: 10.1016/j.patcog.2008.08.004.
  • [106] Kato Y., Seki H., Kasami T.: Subclasses of tree adjoining grammars for RNA secondary structure. In: Proceedings of 7th International Workshop on Tree Adjoining Grammar and Related Formalisms, pp. 48–55, Vancouver, Canada, 2004.
  • [107] Kato Y., Seki H., Kasami T.: Stochastic multiple context-free grammar for RNA pseudoknot modeling. In:Proceedings of 8th International Workshop onTree Adjoining Grammar and Related Formalisms, pp. 57–64, Sydney, Australia, 2006. doi: 10.3115/1654690.1654698.
  • [108] Kennedy P.J., Osborn T.R.: A model of gene expression and regulation in anartificial cellular organism, Complex Systems, vol. 13, pp. 33–59, 2001.
  • [109] Kirsch R.A.: Computer determination of the constituent structure of biological images, Computers and Biomedical Research, vol. 4, pp. 315–328, 1971. doi: 10.1016/0010-4809(71)90034-6.
  • [110] Knudsen B., Hein J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Bioinformatics, vol. 15,pp. 446–454, 1999. doi: 10.1093/bioinformatics/15.6.446.
  • [111] Knudsen B., Hein J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, vol. 31, pp. 3423–3428, 2003.
  • [112] Knudsen B., Miyamoto M.M.: Sequence alignments and pair hidden Markov models using evolutionary history, Journal of Molecular Biology, vol. 333, pp. 453–460, 2003. doi: 10.1016/j.jmb.2003.08.015.
  • [113] Knuth D.: Semantics of context-free languages, Mathematical Systems Theory, vol. 2, pp. 127–145, 1968. doi: 10.1007/bf01692511.
  • [114] Koutroumbas K., Theodoridis S.: Pattern Recognition, Academic Press, Boston, 2008.
  • [115] Krogh A., Brown M., Mian I.S., Sjoander K., Haussler D.: Hidden Markov models in computational biology: Applications to protein modeling, Journal of Molecular Biology, vol. 235, pp. 1501–1531, 1994.
  • [116] Krogh A., Larsson B., Heijne von G., Sonnhammer E.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, Journal of Molecular Biology, vol. 305, pp. 567–580, 2001.
  • [117] Krogh A., Mian I.S., Haussler D.: A hidden Markov model that finds genes in E. coli DNA, Nucleic Acids Research, vol. 22, pp. 4768–4778, 1994.
  • [118] Kulp D., Haussler D., Reese M.G., Eeckman F.H.: A Generalized Hidden Markov Model for the Recognition of Human Genes in DNA. In: Proceedings of the 4th International Conference on Intelligent Systems for Molecular Biology, pp. 134–142, St. Louis, MO, USA, 1996.
  • [119] Lasfar M., Bouden H.: A method of data mining using Hidden Markov Models(HMMs) for protein secondary structure prediction, Procedia Computer Science, vol. 127, pp. 42–51, 2018. doi: 10.1016/j.procs.2018.01.096.
  • [120] Ledley R.S.: High-speed automatic analysis of biomedical pictures, Science, vol 146, pp. 216–223, 1964. doi: 10.1126/science.146.3641.216.
  • [121] Ledley R.S., Rotolo L.S., Golab T.J., Jacobsen J.D., Ginsberg M.D., Wilson J.B.: FIDAC: Film input to digital automatic computer and associated syntax-directed pattern-recognition programming system. In: J.T. Tippet,D. Beckovitz, L. Clapp, C. Koester, A. Vanderburgh Jr. (eds.), Optical and Electro-optical Information Processing, pp. 591–613, MIT Press, Cambridge, MA, 1965.
  • [122] Lee H.C., Fu K.S.: A stochastic syntax analysis procedure and its application to pattern classification, IEEE Transactions on Computers, vol. 21, pp. 660–666,1972. doi: 10.1109/t-c.1972.223571.
  • [123] Lefebvre F.: A grammar-based unification of several alignment and folding algorithms. In: Proceedings of 4th International Conference on Intelligent Systems for Molecular Biology, pp. 143–154, St. Louis, MO, USA, 1996.
  • [124] Leung S., Mellish C., Robertson D.: Basic Gene Grammars and DNA-ChartParser for language processing of Escherichia coli promoter DNA sequences, Bioinformatics, vol. 17, pp. 226–236, 2001.
  • [125] Levenshtein V.I.: Binary codes capable of correcting deletions, insertions and reversals, Soviet Physics Doklady, vol. 10, pp. 707–710, 1966.
  • [126] Li J., Lee J., Liao L.: A new algorithm to train hidden Markov models for biological sequences with partial labels, BMC Bioinformatics, vol. 22, 162, 2021. doi: 10.1186/s12859-021-04080-0.
  • [127] Li M., Cheng M., Ye Y., Hon W., Ting H., Lam T., Tang C.,et al.: Predicting RNA secondary structures: One-grammar-fits-all solution, Lecture Notes in Computer Science, vol. 9096, pp. 211–222, 2015. doi: 10.1007/978-3-319-19048-818.
  • [128] Liang K.C., Wang X., Anastassiou D.: Bayesian Basecalling for DNA Sequence Analysis Using Hidden Markov Models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4(3), pp. 430–440, 2007. doi: 10.1109/tcbb.2007.1027.
  • [129] Liu L., Mori T., Zhao Y., Hayashida M., Akutsu T.: Euler string-based compression of tree-structured data and its application to analysis of RNAs, Current Bioinformatics, vol. 13, pp. 25–33, 2018.doi: 10.2174 /1574893611666160608102231.
  • [130] Lobo D., Vico F.J., Dassow J.: Graph grammars with string-regulated rewriting, Theoretical Computer Science, vol. 412, pp. 6101–6111, 2011. doi: 10.1016/j.tcs.2011.07.004.
  • [131] Lottaz C., Iseli C., Jongeneel C.V., Bucher P.: Modeling sequencing errors by combining hidden Markov models, Bioinformatics, vol. 19 (Suppl. 2), pp. i103–i112, 2003. doi: 10.1093/bioinformatics/btg1067.
  • [132] Lu S.Y., Fu K.S.: Structure-preserved error-correcting tree automata for syntactic pattern recognition. In:1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, pp. 413–419, Clearwater, FL, USA, 1976. doi: 10.1109/cdc.1976.267768.
  • [133] Lyngsø R.B., Pedersen C.N.: RNA pseudoknot prediction in energy-based models, Journal of Computational Biology, vol. 7, pp. 409–427, 2000. doi: 10.1089/106652700750050862.
  • [134] Majoros W.H., Pertea M., Delcher A.L., Salzberg S.L.: Efficient decoding algorithms for generalized hidden Markov model gene finders, BMC Bioinformatics, vol. 6, 16, 2005. doi: 10.1186/1471-2105-6-16.
  • [135] Mamitsuka H., Abe N.: Predicting location and structure of beta-sheet regionsusing stochastic tree grammars. In: Proceedings of 2nd International Conference on Intelligent Systems for Molecular Biology, pp. 276–284, Stanford, CA, USA, 1994.
  • [136] Mamuye A., Merelli E., Tesei L.: A graph grammar for modelling RNA folding. In: Proceedings of 2nd Graphs as Models Workshop, pp. 31–41, Eindhoven, The Netherlands, 2016. doi: 10.4204/eptcs.231.3.
  • [137] Marchand B., Will S., Berkemer S.J., Ponty Y., Bulteau L.: Automated design of dynamic programming schemes for RNA folding with pseudoknots. In: Proceedings of 22nd International Workshop on Algorithms in Bioinformatics, pp. 7:1–7:24, Potsdam, Germany, 2022. doi: 10.1186/s13015-023-00229-z.
  • [138] Markov A.A.: Essai dune recherche statistique sur le texte du roman Eugene Onegin illustrant la liais on des epreuve en chain, Bulletin de l’Academie Imperiale des Sciences de St-Petersbourg, vol. 7, pp. 153–162, 1913.
  • [139] Matsui H., Sato K., Sakakibara Y.: Pair stochastic tree adjoining grammars for aligning and predicting pseudok not RNA structures, Bioinformatics, vol. 21, pp. 2611–2617, 2005. doi: 10.1093/bioinformatics/bti385.
  • [140] Menichelli C., Gascuel O., Brehelin L.: Improving pairwise comparison of protein sequences with domain co-occurrence, PLoS Computational Biology, vol. 14, e1005889, 2018. doi: 10.1371/journal.pcbi.1005889.
  • [141] Muggleton S., Bryant C., Srinivasan A., Whittaker A., Topp S., Rawlings C.: Are grammatical representations useful for learning from biological sequencedata? A case study, Journal of Computational Biology, vol. 8, pp. 493–522, 2001.
  • [142] Munch K., Krogh A.: Automatic generation of gene finders for eukaryotic species, BMC Bioinformatics, vol. 7, 263, 2006. doi: 10.1186/1471-2105-7-263.
  • [143] Nebel M.E., Weinberg F.: Algebraic and combinatorial properties of common RNA pseudoknot classes with applications, Journal of Computational Biology, vol. 19, pp. 1134–1150, 2012. doi: 10.1089/cmb.2011.0094.
  • [144] Pachter L., Alexandersson M., Cawley S.: Applications of generalized pair hidden Markov models to alignment and gene finding problems, Journal of Computational Biology, vol. 9, pp. 389–399, 2002. doi: 10.1089/10665270252935520.
  • [145] Pavlidis T.: Structural descriptions and graph grammars. In: S.K. Chang, K.S. Fu (eds.), Pictorial Information Systems, pp. 86–103, Springer, Berlin–Heidelberg–New York, 1980. doi: 10.1007/3-540-09757-04.
  • [146] Pedersen J.C., Hein J.: Gene finding with a hidden Markov model of genome structure and evolution, Bioinformatics, vol. 19, pp. 219–227, 2003. doi: 10.1093/bioinformatics/19.2.219.
  • [147] Peris P., Lopez D., Campos M.: IgTM: An algorithm to predict transmembrane domains and topology in proteins, BMC Bioinformatics, vol. 9, 367, 2008. doi: 10.1186/1471-2105-9-367.
  • [148] Plotz T., Fink G.A.: Pattern recognition methods for advanced stochastic protein sequence analysis using HMMs, Pattern Recognition, vol. 39, pp. 2267–2280,2006. doi: 10.1016/j.patcog.2005.10.007.
  • [149] Ponty Y.: Ensemble Algorithms and Analytic Combinatorics in RNA Bioinformatics and Beyond, Universite Paris-Saclay, 2020.
  • [150] Porter T., Hajibabaei M.: Profile hidden Markov model sequence analysis can help remove putative pseudogenes from DNA barcoding and metabarcod in gdatasets, BMC Bioinformatics, vol. 22, 256, 2021. doi: 10.1186/s12859- 021-04180-x.
  • [151] Przytycka T., Srinivasan R., Rose G.D.: Recursive domains in proteins, Protein Science, vol. 11, pp. 409–417, 2002. doi: 10.1110/ps.24701.
  • [152] Quadrini M., Tesei L., Merelli E.: An algebraic language for RNA pseudoknot scomparison, BMC Bioinformatics, vol. 20, 161, 2019. doi: 10.1186/s12859-019-2689-5.
  • [153] Rabin M.O.: Probabilistic automata, Information and Control, vol. 6,pp. 230–245, 1963. doi: 10.1016/s0019-9958(63)90290-0.
  • [154] Reese M.G., Kulp D., Tammana H., Haussler D.:Geniegene finding in Drosophila melanogaster, Genome Research, vol. 10, pp. 529–538, 2000.
  • [155] Riechert M., zu Siederdissen H ̈oner C.H., Stadler P.F.: Algebraic dynamic programming for multiple context-free grammar, Theoretical Computer Science, vol. 639, pp. 91–109, 2016. doi: 10.1016/j.tcs.2016.05.032.
  • [156] Ripley B.D.: Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, 2008.
  • [157] Rivas E., Eddy S.R.: The language of RNA: a formal grammar that includes pseudoknots, Bioinformatics, vol. 16(4), pp. 334–340, 2000. doi: 10.1093/bioinformatics/16.4.334.
  • [158] Rivas E., Eddy S.R.: Noncoding RNA gene detection using comparatives equence analysis, BMC Bioinformatics, vol. 2, 8, 2001. doi: 10.1186/1471-2105-2-8.
  • [159] Rosenblueth D.A., Thieffry D., Huerta A.M., Salgado H., Collado-Vides J.: Syntactic recognition of regulatory regions in Escherichia coli, Computer Applications in the Biosciences, vol. 12, pp. 415–422, 1996.
  • [160] Rosenkrantz D.J.: Programmed grammars and classes of formal languages, Journal of the Association for Computing Machinery, vol. 16, pp. 107–131, 1969. doi: 10.1145/321495.321504.
  • [161] Sakakibara Y.: Grammatical inference in bioinformatics, IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 27, pp. 1051–1062, 2005. doi: 10.1109/tpami.2005.140
  • [162] Sakakibara Y., Brown M., Hughey R., Mian I.S., Sjolander K., Underwood R.C., Haussler D.: Stochastic context-free grammars for tRNA modeling, Nuclear Acids Research, vol. 22(23), pp. 5112–5120, 1994. doi: 10.1093/nar/22.23.5112.
  • [163] Salomaa A.: Probabilistic and weighted grammars, Information and Control, vol. 15, pp. 529–544, 1969. doi: 10.1016/s0019-9958(69)90554-3.
  • [164] Sanchez-Graillet O., Poesio M.: Negation of protein-protein interactions: analysis and extraction, Bioinformatics, vol. 23, pp. i424–i432, 2007. doi: 10.1093/bioinformatics/btm184.
  • [165] Sato K., Hamada M.: Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery, Briefings in Bioinformatics, vol. 24, 2023. doi: 10.1093/bib/bbad186.
  • [166] Sauthoff G., Giegerich R.: Yield grammar analysis and product optimizationin a domain-specific language for dynamic programming, Science of Computer Programming, vol. 87, pp. 2–22, 2014. doi: 10.1016/j.scico.2013.09.011.
  • [167] Schalkoff R.: Pattern Recognition: Statistical, Structural and Neural Approaches, Wiley, New York, 2005.
  • [168] Searls D.B.: The linguistics of DNA, American Scientist, vol. 80(6), pp. 579–591, 1992.
  • [169] Searls D.B.: The computational linguistics of biological sequences. In: L. Hunter(ed.), Artificial Intelligence and Molecular Biology, pp. 47–120, AAAI/MITPress, Menlo Park, CA, 1993.
  • [170] Searls D.B.: String Variable Grammar: a logic grammar formalism for DNA sequences, The Journal of Logic Programming, vol. 24, pp. 73–102, 1995.
  • [171] Searls D.B.: Linguistic approaches to biological sequences, Bioinformatics, vol. 13, pp. 333–344, 1997. doi: 10.1093/bioinformatics/13.4.333.
  • [172] Searls D.B.: Reading the book of life, Bioinformatics, vol. 17, pp. 579–580, 2001. doi: 10.1093/bioinformatics/17.7.579.
  • [173] Searls D.B.: The language of genes, Nature, vol. 420, pp. 211–217, 2002. doi: 10.1038/nature01255.
  • [174] Seesi S.A., Rajasekaran S., Ammar R.: Pseudoknot Identification through Learning TAGRNA. In: M. Chetty, A. Ngom, S. Ahmad (eds.), Pattern Recognition in Bioinformatics. PRIB 2008. Lecture Notes in Computer Science, vol. 5265, pp. 132–143, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-88436-112.
  • [175] Seki H., Matsumura T., Fujii M., Kasami T.: On multiple context-free grammars, Theoretical Computer Science, vol. 88, pp. 191–229, 1991. doi: 10.1016/0304-3975(91)90374-b.
  • [176] Seoud R.A.A., Youssef A.B.M., Kadah Y.M.: Extraction of protein interaction information from unstructured text using a link grammar parser. In: Proceedings of 2007 International Conference on Computer Engineering and Systems, pp. 70–75, Cairo, Egypt, 2007. doi: 10.1109/icces.2007.4447028.
  • [177] Shen X., Vikalo H.: ParticleCall: A particle filter for base calling in next-generation sequencing systems, BMC Bioinformatics, vol. 13, 160, 2012.doi: 10.1186/1471-2105-13-160.
  • [178] Siederdissen zu C.H., Hofacker I.L., Stadler P.F.: Product grammars for alignment and folding, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, pp. 507–519, 2015. doi: 10.1109/tcbb.2014.2326155.
  • [179] Silva da W.M.C., Andersen J.L., Holanda M.T., Walter M.E.M.T., Brigido M.M., Stadler P.F., Flamm C.: Exploring plant sesquiterpene diversity by generating chemical networks, Processes, vol. 7, p. 240, 2019.doi: 10.3390/pr7040240.
  • [180] Singh P., Bandyopadhyay P., Bhattacharya S., Krishnamachari A., Sengupta S.: Ribos witch detection using profile hidden Markov models, BMC Bioinformatics, vol. 10, 325, 2009. doi: 10.1186/1471-2105-10-325.
  • [181] Slisenko A.O.: Context-free grammars as a tool for describing polynomial-time subclasses of hard problems, Information Processing Letters, vol. 14, pp. 52–56,1982. doi: 10.1016/0020-0190(82)90086-2.
  • [182] Smoly I., Carmel A., Shemer-Avni Y., Yeger-Lotem E., Ziv-Ukelson M.: Algorithms for regular tree grammar network search and their application to mining human-viral infection patterns, Journal of Computational Biology, vol. 23, pp. 165–179, 2016. doi: 10.1089/cmb.2015.0168.
  • [183] S ̈oding J.: Protein homology detection by HMM-HMM comparison, Bioinformatics, vol. 21, pp. 951–960, 2005.
  • [184] Srivastava P.K., Desai D.K., Nandi S., Lynn A.M.: HMM-Mod E-improved classification using profile hidden Markov models by optimising the discrimination thre shold and modifying emission probabilities with negative training sequences, BMC Bioinformatics, vol. 8, 104, 2007. doi: 10.1186/1471-2105-8-104.
  • [185] St-Onge K., Thibault P., Hamel S., Major F.: Modeling RNA tertiary structure motifs by graph-grammars, Nucleic Adids Research, vol. 35, pp. 1726–1736,2007. doi: 10.1093/nar/gkm069.
  • [186] Sun Y., Buhler J.: Designing patterns for profile HMM search, Bioinformatics, vol. 23, pp. e36–e43, 2006. doi: 10.1093/bioinformatics/btl323.
  • [187] Sun Y., Buhler J.: Designing patterns and profiles for faster HMM search, IEEE/ACM Trans Computational Biology and Bioinformatics, vol. 6, pp. 232–243, 2009. doi: 10.1109/tcbb.2008.14.
  • [188] Tamposis I.A., Tsirigos K.D., Theodoropoulou M.C., Kontou P.I., Bagos P.G.: Semi-supervised learning of hidden Markov models for biological sequence analysis, Bioinformatics, vol. 35, pp. 2208–2215, 2019.doi: 10.1093 /bioinformatics/bty910.
  • [189] Tanaka E., Ikeda M., Ezure K.: Direct parsing, Pattern Recognition, vol. 19, pp. 315–323, 1986. doi: 10.1016/0031-3203(86)90057-9.
  • [190] Temkin J.M., Gilder M.R.: Extraction of protein interaction information from unstructured text using a context-free grammar, Bioinformatics, vol. 19, pp. 2046–2053, 2003. doi: 10.1093/bioinformatics/btg279.
  • [191] Terrapon N., Gascuel O., Marechal E., Brehelin L.: Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum, BMC Bioinformatics, vol. 13, p. 67, 2012. doi: 10.1186/1471-2105-13-67.
  • [192] Thomason M.G., Gonzales R.C.: Syntactic recognition of imperfectly specified patterns, IEEE Transactions on Computers, vol. 24, pp. 93–95, 1975.doi: 10.1109/t-c.1975.224086.
  • [193] Tsafnat G., Schaeffer J., Clayphan A., Iredell J.R., Partridge S.R., Coiera E.: Computational inference of grammars for larger-than-gene structures from anno-tated gene sequences, Bioinformatics, vol. 27, pp. 791–796, 2011. doi: 10.1093/bioinformatics/btr036.
  • [194] Turakainen P.: On stochastic languages, Information and Control, vol. 12, pp. 304–313, 1968. doi: 10.1016/s0019-9958(68)90360-4.
  • [195] Turan G.: On the complexity of graph grammars, Acta Cybernetica, vol. 6(3),pp. 271–280, 1983.
  • [196] Uemura Y., Hasegawa A., Kobayashi S., Yokomori T.: Tree adjoining grammars for RNA structure prediction, Theoretical Computer Science, vol. 210, pp. 277–303, 1999. doi: 10.1016/s0304-3975(98)00090-5.
  • [197] Vijayakumar J., Mathew L., Nagar A.K.: A new class of graph grammarsand modelling of certain biological structures,Symmetry, vol. 15, p. 349, 2023.doi: 10.3390/sym15020349.
  • [198] Wang J., Keightley P.D., Johnson T.: MCALIGN2: faster, accurate global pair-wise alignment of non-coding DNA sequences based on explicit models of indelevolution,BMC Bioinformatics, vol. 7, 292, 2006. doi: 10.1186/1471-2105-7-292.
  • [199] Weinberg Z., Ruzzo W.L.: Sequence-based heuristics for faster annotation ofnon-coding RNA families,Bioinformatics, vol. 22, pp. 35–39, 2006.
  • [200] Wieczorek W., Unold O.: Use of a novel grammatical inference approach inclassification of amyloidogenic hexapeptides,Computational and MathematicalMethods in Medicine, vol. 2016, 1782732, 2016. doi: 10.1155/2016/1782732.
  • [201] Wistrand M., Sonnhammer E.L.: Improving profile HMM discriminationby adapting transition probabilities,Journal of Molecular Biology, vol. 338,pp. 847–854, 2004. doi: 10.1016/j.jmb.2004.03.023.
  • [202] Won K.J., Hamelryck T., Pr ̈ugel-Bennett A., Krogh A.: An evolutionary methodfor learning HMM structure: prediction of protein secondary structure,BMCBioinformatics, vol. 8, 357, 2007. doi: 10.1186/1471-2105-8-357.
  • [203] Yandell M.D., Majoros W.H.: Genomics and natural language processing,Na-ture Reviews Genetics, vol. 3, pp. 601–610, 2002. doi: 10.1038/nrg861.
  • [204] Yokomori T., Kobayashi S.: Learning local languages and their application toDNA sequence analysis,IEEE Transactions on Pattern Analysis and MachineIntelligence, vol. 20, pp. 1067–1079, 1998. doi: 10.1109/34.722617.
  • [205] Yoon B.J.: Hidden Markov models and their applications in biological se-quence analysis,Current Genomics, vol. 10, pp. 402–415, 2009. doi: 10.2174/138920209789177575.
  • [206] Yoon B.J., Vaidyanathan P.P.: Structural alignment of RNAs using profile-csHMMs and its application to RNA homology search: Overview and newresults,IEEE Transactions on Automatic Control, vol. 53, pp. 10–25, 2008.doi: 10.1109/TAC.2007.911322.
  • [207] Zadeh L.A.: Note on fuzzy languages,Information Sciences, vol. 1, pp. 421–434,1969. doi: 10.1016/0020-0255(69)90025-5.
  • [208] Zehnder T., Benner P., Vingron M.: Predicting enhancers in mammaliangenomes using supervised hidden Markov models,BMC Bioinformatics, vol. 20,157, 2019. doi: 10.1186/s12859-019-2708-6.
  • [209] Zhang S., Borovok I., Aharonowitz Y., Sharan R., Bafna V.: A sequence-basedfiltering method for ncRNA identification and its application to searching forriboswitch elements,Bioinformatics, vol. 22, pp. e557–e565, 2006. doi: 10.1093/bioinformatics/btl232.
  • [210] Zhao Y., Hayashida M., Akutsu T.: Integer programming-based method forgrammar-based tree compression and its application to pattern extraction ofglycan tree structures,BMC Bioinformatics, vol. 11, S4, 2010. doi: 10.1186/1471-2105-11-s11-s4.
  • [211] Zhao Y., Hayashida M., Cao Y., Hwang J., Akutsu T.: Grammar-based com-pression approach to extraction of common rules among multiple trees of glycansand RNAs,BMC Bioinformatics, vol. 16, 128, 2015. doi: 10.1186/s12859-015-0558-4.
  • [212] Zou L., Wang Z., Wang Y., Hu F.: Combined prediction of transmembranetopology and signal peptide ofβ-barrel proteins: Using a hidden Markovmodel and genetic algorithms,Computers in Biology and Medicine, vol. 40,pp. 621–628, 2010. doi: 10.1016/j.compbiomed.2010.04.006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc9df5f7-3098-4576-8026-4ed7e4261783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.