PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Noninvasive monitoring with strongly absorbed light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transmission of light through tissue is used in noninvasive monitoring, in particular photoplethysmography. Investigations involving the transmission of wavelengths absorbed by bilirubin (short wavelength visible light) have been limited, due to strong absorption by haemoglobin. Achieving transmission of these wavelengths through tissue may advance noninvasive monitoring of substances like bilirubin. This work investigates the use of high power light sources together with improvements in signal-to-noise ratio as a means of enabling the transmission of strongly absorbed light through tissue. A custom device using multiple high-power short-wavelength visible light sources together with low power red and infrared sources, and background light cancellation – to improve signal-to-noise ratio, was constructed. Transmission of 454–1200 nm light through tissue was achieved, with pulsations present in measured signals. The transmission through tissue of multiple wavelengths of strongly absorbed light can be achieved by using high power light sources in conjunction with cancelling the effect of background light. Use of these techniques may allow investigations into the noninvasive monitoring of substances such as bilirubin using photoplethysmography.
Czasopismo
Rocznik
Strony
177--190
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
  • Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, South Australia
  • Biomedical Engineering Department, Flinders University School of Medicine/Flinders Medical Centre, South Australia
autor
  • Biomedical Engineering Department, Flinders University School of Medicine/Flinders Medical Centre, South Australia
Bibliografia
  • [1] AOYAGI T., Pulse oximetry: its invention, theory, and future, Journal of Anesthesia 17(4), 2003, pp. 259–266.
  • [2] ALEXANDER C.M., TELLER L.E., GROSS J.B., Principles of pulse oximetry: theoretical and practical considerations, Anesthesia and Analgesia 68(3), 1989, pp. 368–376.
  • [3] MENDELSON Y., Pulse oximetry: theory and applications for noninvasive monitoring, Clinical Chemistry 38(3), 1992, pp. 1601–1607.
  • [4] TAKATANI S., GRAHAM M.D., Theoretical analysis of diffuse reflectance from a two-layer tissue model, IEEE Transactions on Biomedical Engineering 26(12), 1979, pp. 656–664.
  • [5] ZIJLSTRA W., BUURSMA A., VAN ASSENDELFT O., Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin, VSP, Leiden, The Netherlands, 2000.
  • [6] MANZKE B., SCHWIDER J., LUTTER N.O., ENGELHARDT K., STORK W., Multiwavelength pulse oximetry in the measurement of hemoglobin fractions, Proceedings of SPIE 2676, 1996, pp. 332–340.
  • [7] BARKER S.J., CURRY J., REDFORD D., MORGAN S., Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study, Anesthesiology 105(5), 2006, pp. 892–897.
  • [8] MACKNET M., NORTON S., KIMBALL-JONES P., MARTIN A.R., ALLARD M., Continuous noninvasive measurement of hemoglobin via pulse CO-oximetry, Anesthesia and Analgesia 105, 2007, pp. S108–S109.
  • [9] MACKNET M.R., NORTON S., KIMBALL-JONES P.L., APPLEGATE R.L., MARTIN R.D., ALLARD M.W., Noninvasive measurement of continuous hemoglobin concentration via pulse CO-oximetry, Chest 132(4_MeetingAbstracts), 2007, pp. 493c–494c.
  • [10] SUZAKI H., KOBAYASHI N., NAGAOKA T., IWASAKI K., UMEZU M., TAKEDA S., TOGAWA T., Noninvasive measurement of total hemoglobin and hemoglobin derivatives using multiwavelength pulse spectrophotometry – in vitro study with a mock circulatory system, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ‘06, 2006, pp. 799–802.
  • [11] FINE I., FIKHTE B., SHVARTSMAN L.D., Occlusion spectroscopy as a new paradigm for noninvasive blood measurements, Proceedings of SPIE 4263, 2001, pp. 122–130.
  • [12] MARUO K., CHIN J., TAMURA M., Noninvasive blood glucose monitoring by novel optical-fiber probe, Proceedings of SPIE 4624, 2002, pp. 20–27.
  • [13] BENARON D.A., PARACHIKOV I.H., CHEONG W.-F., FRIEDLAND S., DUCKWORTH J.L., OTTEN D.M., RUBINSKY B.E., HORCHNER U.B., KERMIT E.L., LIU F.W., LEVINSON C.J., MURPHY A.L., PRICE J.W., TALMI Y., WEERSING J.P., Quantitative clinical nonpulsatile and localized visible light oximeter: design of the T-Stat tissue oximeter, Proceedings of SPIE 4955, 2003, pp. 355–368.
  • [14] BENARON D.A., PARACHIKOV I.H., WAI-FUNG CHEONG, FRIEDLAND S., RUBINSKY B.E., OTTEN D.M., LIU F.W.H., LEVINSON C.J., MURPHY A.L., PRICE J.W., TALMI Y., WEERSING J.P., DUCKWORTH J.L., HÖRCHNER U.B., KERMIT E.L., Design of a visible-light spectroscopy clinical tissue oximeter, Journal of Biomedical Optics 10(4), 2005, article 044005.
  • [15] JAY G.D., RACHT J., MCMURDY J., MATHEWS Z., HUGHES A., SUNER S., CRAWFORD G., Point-of-care noninvasive hemoglobin determination using fiber optic reflectance spectroscopy, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ‘07, 2007, pp. 2932–2935.
  • [16] YOON G., KIM S.-J., JEON K.J., Robust design of finger probe in non-invasive total haemoglobin monitor, Medical and Biological Engineering and Computing 43(1), 2005, pp. 121–125.
  • [17] HAI DU, RU-CHUN AMY FUH, JUNZHONG LI, CORKAN L.A., LINDSEY J.S., PhotochemCAD: a computer -aided design and research tool in photochemistry, Photochemistry and Photobiology 68(2), 1998, pp. 141–142.
  • [18] ANDERSON R.R., PARRISH J.A., The optics of human skin, Journal of Investigative Dermatology 77(1), 1981, pp. 13–19.
  • [19] COPE M., The Application of Near Infrared Spectroscopy to Non Invasive Monitoring of Cerebral Oxygenation of the Newborn Infant, Ph.D. Thesis, Department of Medical Physics and Bioengineering, University College of London, 1991, pp. 214–219.
  • [20] CIMPONERIU A., KAPLAN E., Optical imaging of intrinsic signals with blue light, SPIE’s Opto Northeast and Imaging, Rochester, NY, 2001, Poster NE 03-18.
  • [21] BUITEVELD H., HAKVOORT J.H.M., DONZE M., Optical properties of pure water, Proceedings of SPIE 2258, 1994, pp. 174–183.
  • [22] PALMER K.F., WILLIAMS D., Optical properties of water in the near infrared, Journal of the Optical Society of America 64(8), 1974, pp. 1107–1110.
  • [23] LINHONG KOU, LABRIE D., CHYLEK P., Refractive indices of water and ice in the 0.65- to 2.5-μ m spectral range, Applied Optics 32(19), 1993, pp. 3531–3540.
  • [24] MEYER-ARENDT J.R., Introduction to Classical and Modern Optics, 2 Ed., Prentice-Hall of Australia, Sydney, 1984.
  • [25] Power light source, Luxeon Rebel, Technical Datasheet DS56, Philips Lumileds Lighting Company, 2007.
  • [26] GaAlAs Infrared Emitter OPE5194WK, Roithner Lasertechnik, 2004.
  • [27] MCEWEN M.P., BULL G.P., REYNOLDS K.J., Vessel calibre and haemoglobin effects on pulse oximetry, Physiological Measurement 30(9), 2009, pp. 869–883.
  • [28] MANNHEIMER P.D., The light-tissue interaction of pulse oximetry, Anesthesia and Analgesia 105(6), 2007, pp. S10–S17.
  • [29] LED1200-03 Infrared LED Lamp, Roithner Lasertechnik, 2005.
  • [30] LED Lamp ELD-810-525, Roithner Lasertechnik, 2000.
  • [31] LED Lamp ELD-780-524, EPIGAP Optoelektronik GmbH, 2008.
  • [32] Solid State Lamp, L-1513SRC-E, Kingbright, 2001.
  • [33] Silicon PIN Photodiode with Enhanced Blue Sensitivity; in SMT. BPW 34 B, BPW 34 BS, Osram, 2002.
  • [34] Large Area InGaAs Photodiode Series. PT611, PT711, PT811, PT911, Roithner Lasertechnik, 2006.
  • [35] PT5xx InGaAs photodiode with 300 μ m sensitive area, Roithner Lasertechnik, 2006.
  • [36] Occupational Exposure to Ultraviolet Radiation, Radiation Protection Series Publication No. 12, Australian Radiation Protection and Nuclear Safety Agency, 2006.
  • [37] MACDONALD R., A Non-invasive Method for Arterial Bilirubin Measurement Using Photoplethysmography Principles, Ph.D. Thesis, School of Computer Science Engineering and Mathematics, Flinders University, 2008.
  • [38] FLEWELLING R., Noninvasive optical monitoring, [In] The Biomedical Engineering Handbook, [Ed.] J.D. Bronzino, 2nd Ed., Vol. I, CRC Press LLC, Boca Raton, Florida, 2000, pp. 86.1–86.11.
  • [39] SHAO YANG, BATCHELDER P.B., RALEY D.M., Effects of tissue outside of arterial blood vessels in pulse oximetry: a model of two-dimensional pulsation, Journal of Clinical Monitoring and Computing 21(6), 2007, pp. 373–379.
  • [40] LIU H., CHANCE B., HIELSCHER A.H., JACQUES S.L., TITTEL F.K., Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy, Medical Physics 22(8), 1995, pp. 1209–1217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e6bdfd33-4733-47fe-8f7e-4336b5b9af48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.