PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The potential impact of land use changes on heavy metal contamination in the drinking water reservoir catchment (Dobczyce Reservoir, south Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Potencjalny wpływ zmian użytkowania gruntów na zanieczyszczenie metalami ciężkimi w zlewni zbiornika wody pitnej (Zbiornik Dobczycki, południowa Polska)
Języki publikacji
EN
Abstrakty
EN
To investigate and assess the effects of land use and its changes on concentrations of heavy metals (Pb, Zn, Cd, Cu, Mn, Ni, Fe) in the tributary of drinking water reservoir catchment, soils of different land use types (forest, arable land, meadows and pastures, residential areas), suspended sediment and bottom sediment were collected. Heavy metals were analyzed using atomic absorption spectrophotometry (AAS). The metal distribution pattern was observed, where Zn and Cd could be considered as main metal contaminants. The variation in the concentration level of Zn and Cd in studied soils showed the impact of pollution from anthropogenic activities. Also some seasonal variations were visible among the suspended sediment and bottom sediment samples which could be associated with land agricultural practices or meteorological conditions. The sediment fingerprints approach used for determining sources of the suspension in the catchment showed (Kruskal-Wallis H test, p˂0.05), that only Mn and Ni were not able to be distinguished among the potential sediment sources. A multiple linear regression model described the relationship between suspended sediment and 4 types of soil samples. The results related suspended composition mostly to the samples from the residential land use. Considering the contemporary trend of observed changes in land use resulting in conversion of agricultural areas into residential and service structures these changes can be essential for the contamination of aquatic environment. This situation is a warning sign due to the rapid industrialization, urbanization and intensive agriculture in this region what can significantly affect the drinking water quality.
PL
Celem pracy była ocena wpływu użytkowania gruntów i ich zmian na stężenia metali ciężkich (Pb, Zn, Cd, Cu, Mn, Ni, Fe) w dopływie zlewni zbiornika wody pitnej. Do badań pobrano próbki gleb z różnych typów użytkowania gruntów (las, grunty orne, łąki i pastwiska, tereny zabudowane), rumowiska unoszonego oraz osadów dennych. Metale ciężkie oznaczono za pomocą Atomowej Spektroskopii Absorpcyjnej (ASA). W badanych próbkach zaobserwowano zmienność stężeń metali w zależności od sposobu użytkowania gruntów. Otrzymane wyniki świadczą również, że główne zanieczyszczenie metaliczne w zlewni stanowią Zn i Cd. Wśród próbek rumowiska unoszonego oraz osadów dennych widoczne były pewne wahania sezonowe, które mogły być związane z działalnością rolniczą lub warunkami meteorologicznymi. Zastosowana do określania źródeł zawiesiny w zlewni metoda sediment fingerprints (test Kruskal-Wallis H test, p˂0.05), ) wykazała, że spośród badanych metali jedynie Mn i Ni nie umożliwiają rozróżnienia potencjalnych źródeł pochodzenia rumowiska unoszonego. Pozostałe metale zostały zatem wykorzystane do opisania zależności między rumowiskiem a 4 typami próbek gleb za pomocą modelu regresji wielokrotnej. Model ten wykazał związek zanieczyszczenia próbek rumowiska metalami z zanieczyszczeniem gleb z terenów zabudowanych. Biorąc pod uwagę zaobserwowany współczesny trend zmian w użytkowaniu gruntów, prowadzący do przekształcania obszarów rolniczych w obszary mieszkalne i usługowe, może on istotnie wpływać na zanieczyszczenie środowiska wodnego i jakość wody pitnej. Taka sytuacja jest znakiem ostrzegawczym ze względu na szybkie uprzemysłowienie, urbanizację i intensywną gospodarkę rolną w tym regionie.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Poland
  • Cracow University of Technology, Poland
  • AGH University of Science and Technology, Poland
Bibliografia
  • 1. Adriano, D.C. (2001). Trace elements in terrestrial environments, Biogeochemistry, bioavailability and risks of metals, Springer, New York, 2001.
  • 2. Banasik, K. & Hejduk, L. (2005). Grain size distribution of suspended sediment in small lowland river, Acta Agrophysica, 5, 2, pp. 253-262. (in Polish)
  • 3. Belmont, P., Willenbring, J.K., Schottler, S.P., Marquard, J., Kumarasamy, K. & Hemmis, J.M. (2014). Toward generalizable sediment fingerprinting with tracers that are conservative and nonconservative over sediment routing timescales, Journal of Soils and Sediments, 14, 8, pp. 1479-1492.
  • 4. Bibby, R.L. & Webster-Brown, J.G. (2004). Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand); a comparison with non-urban SPM, Science of the Total Environment, 343, 1-3, pp. 177-197.
  • 5. Carrillo-Gonzalez, R., Simunek, J., Sauve, S. & Adriano, D. (2006). Mechanisms and pathways of trace element mobility in soils, Advances in Agronomy, 91, 6, pp. 111-178.
  • 6. Chao, X., Jia, Y, Shields, F.D., Wang, S.Y & Cooper, C.M. (2009). Numerical simulation of sediment-associated water quality processes for a Mississippi delta lake, Ecohydrology, 2, 3, pp. 350-359.
  • 7. Chen, T.B., Zheng, Y.M. & Chen, H. (2005). Arsenic accumulation in soils for different land use types in Beijing, Geographical Research, 24, 2, pp. 229-235. (in Chinese)
  • 8. Collins, A.L., Walling, D.E. & Leeks, G.J.L. (1997). Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique, Catena, 29, 1, pp. 1-27.
  • 9. Collins, A.L. & Walling, D.E. (2002). Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins, Journal of Hydrology, 261, 1-4, pp. 218-244.
  • 10. Copernicus (2012). Corine Land Cover, (http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (3.03.2019)).
  • 11. Dessouki, T.C.E., Hudson, J.J., Neal, B.R. & Bogard, M.J. (2005). The effect of phosphorus addition on the sediment of contaminants in a uranium mine pit-lake, Water Resources, 39, 13, pp. 3055-3061.
  • 12. Drzewiecki, W. & Mularz, S. (2008). Simulation of water soil erosion effects on sediment delivery to Dobczyce Reservoir, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, B8, pp. 787-794.
  • 13. Forstner, U. (2004). Traceability of sediment analysis, Trends Analitycal Chemistry, 23, 3, pp. 217-236.
  • 14. Foster, I.D.L. & Charlesworth, S.M. (1996). Heavy metals in the hydrological cycle: trends and explanation, Hydrological Processes, 10, 2, pp. 227-261.
  • 15. Gajewska, M. & Wargin, A. (2010). Identification of pollutants potentially occurring in rain water, Poland, Proceedings of ECOpole, (http://www.innowrota.pl/sites/default/files/images/A.Wargin_M.Gajewska_1.pdf (01.09.2017)). (in Polish)
  • 16. Jain, C.K. & Sharma, M.K. (2001). Distribution of trace metals in the Hindon River system, India, Journal of Hydrology, 253, 1-4, pp. 81-90.
  • 17. Kabata-Pendias, A. & Pendias, H. (1993). Biogeochemistry of traces elements, PWN, Warszawa, 1993. (in Polish)
  • 18. Kamala-Kannan, S., Batvari, B., Lee, K., Kannan, N., Krishnamoorthy, R., Shanthi, K. & Jayaprakash, M. (2008). Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake South East India, Chemosphere, 71, 7, pp. 1233-1240.
  • 19. Kopacz, M. (2007). Modelling of changes in surface water quality in response to utilitarian-spatial transformations in small mountain catchments, in: The influence of usage of small mountain catchments on occurrence and intensity of water erosion, Lipski, Cz. (Ed.). Krakow.
  • 20. Kopacz, M. & Twardy, S. (2014). Comparison of concentrations and loads of macronutrients brought with precipitation and leaching from the soil profile, Polish Journal of Environmental Studies, 23, 3A, pp. 132-136.
  • 21. Kopacz, M., Twardy, S., Kowalczyk, A. & Kuzniar, A. (2009). The structural changes of the Raba catchment area in the aspect of selected surface water quality parameters, Polish Journal of Environmental Studies, 18, 3A, pp. 155-160.
  • 22. Koroluk, S.L. & de Boer, D.H. (2007). Land use change and erosional history in a lake catchment system on the Canadian prairies, Catena, 70, 2, pp. 155-168.
  • 23. Kuemmerle, T., Hostert, P., Radeloff, V.C., van der Linden, S., Perzanowski, K. & Kruhlov, I. (2008). Cross-border comparison of post socialist farmland abandonment in the Carpathians, Ecosystems, 11, 4, pp. 614-628.
  • 24. Lacorte, S., Raldua, D., Martinez, E., Navarro, A., Diez, S., Bayona, J.M. & Barcelo, D. (2006). Pilot survey of a broad range of priority pollutants in sediments and fish from the Ebro River Basin (NE Spain), Environmental Pollution, 140, 3, pp. 471-482.
  • 25. Molenda, T. (2006). The dynamics of selected pollutants changes in surficial downflows from an urbanised catchment area, Infrastructure and Ecology of Rural Areas, 4, 3, pp. 117-124. (in Polish)
  • 26. Muller, D. & Kuemmerle, T. (2009). Causes of cropland abandonment during the post-socialist transition in Southern Romania, in: Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe, Groisman, P.Y. & Ivanov, S.V (Eds.). Dordrecht.
  • 27. Myslenice County (2017). Environmental Protection Program for the Myslenice County for 2017-2020 with a view to 2023, (http://www.myslenicki.pl/pl/dokumenty/programy/pos_2017_2020.pdf (5.06.2018)). (in Polish)
  • 28. Pawelek, J. & Spytek, M. (2008). Concentration of biogenic compounds in water of the streams flowing up to the Dobczyce Reservoir, Infrastructure and Ecology of Rural Areas, 5, pp. 179-190.
  • 29. Phillips, J.M., Russell, M.A. & Walling, D.E. (2000). Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments, Hydrological Processes, 14, 14, pp. 2589-2602.
  • 30. Polish Ministry of the Environment 2016. Regulation from Sep. 1, 2016, How to conduct land surface pollution assessment, Dz.U.2016.1395, (http://prawo.sejm.gov.pl (3.06.2018)). (in Polish)
  • 31. Reczynski, W., Jakubowska, M., Golas, J., Parker, A. & Kubica, B. (2010). Chemistry of sediments from the Dobczyce Reservoir, Poland, and the environmental implications, International Journal of Sediment Research, 25, 1, pp. 28-38.
  • 32. Reeder, R.J., Schoonen, M.A. & Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability, Reviews in Mineralogy and Geochemistry, 64, 1, pp. 59-113.
  • 33. Sadag, T., Bandula, T., Materek, E., Mazurkiewicz-Boron, G. & Slonka, R. (Eds.). (2016). The Dobczyce Reservoir-Monograph, The Regional Water Management Authority, Krakow, 2016.
  • 34. Salomons, W. & Forstner, U. (1980). Trace metal analysis on polluted sediments, Part II: Evaluation of environmental impact, Environmetal Technology Letters, 1, pp. 506-517.
  • 35. Skiba, S., Drewnik, M., Klimek, M. & Szmuc, R. (1998). Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica Rivers, Geographical Studies UJ, 103, pp. 125-135.
  • 36. Szalinska, E., Koperczak, A. & Czaplicka-Kotas, A. (2010). Heavy metals in the bottom sediments of Lake Goczalkowickie tributaries, Ochrona Środowiska, 32, 1, pp. 21-25. (in Polish)
  • 37. Szarek-Gwiazda, E. (2013). Factors influencing the concentrations of heavy metals in the Raba River and selected Carpathian dam reservoirs, Studia Naturae 60, Institute of Nature Conservation PAS, Krakow. (in Polish)
  • 38. Szarek-Gwiazda, E., Czaplicka-Kotas, A. & Szalinska, E. (2011). Background concentrations of nickel in the sediments of the Carpathian dam reservoirs (southern Poland), Clean-Soil, Air, Water, 39, 4, pp. 368-375.
  • 39. Szarek-Gwiazda, E. & Sadowska, I. (2010). Distribution of grain size and organic matter content in sediments of submontane dam reservoir, Environment Protection Engineering, 36, 1, pp. 113-124.
  • 40. Szlapa, M., Hachaj, P., Krylow, M. & Szalinska, E. (2017). Release of nitrogen and phosphorus from bottom sediments of the Dobczyce Reservoir due to dynamic changes in the backwater region, Chemical Industry, 96, 6, pp. 1000-1003. (in Polish)
  • 41. Taylor, M.D. (1997). Accumulation of cadmium derived from fertilizers in New Zealand Soil, The Science of the Total Environment, 208, 1-2, pp. 123-126.
  • 42. Taylor, M.D. & Percival, H.J. (2001). Cadmium in soil solutions from a transect of soils away from a fertiliser bin, Environmental Pollution, 113, 1, pp. 35-40.
  • 43. Trzcinska-Tacik, H. & Stachurska-Swakon, A. (2001). Changes of land-use pattern and its influence on vegetation (a case study of Gaik-Brzezowa surroundings, South Poland), in: Transformation of the natural environment of Poland and its functioning, German, K. & Balon, J. (Eds.). Krakow.
  • 44. Twardy, S. (2008). Carpathian agricultural lands as Less Favoured Areas (LFA), Water-Environment-Rural Areas, 8, 2b (24), pp. 191-202. (in Polish)
  • 45. Twardy, S. (2009). The trends in changes in use of the agricultural space in the area of Carpathians, IUNG PIB Studies and Reports, 17, pp. 49-58.
  • 46. Twardy, S. (2011). Results of long term mineral organic fertilization of mountain pastures used for sheep, in: Long-term fertilizing experiments on grassland, Gambus, F. (Ed.). Krakow. (in Polish)
  • 47. USEPA (1994). Method 3051: Microwave Assisted Acid Digestion/ Sludges, Soils, (https://www.epa.gov (10.06.2018)).
  • 48. Walling, D.E. (2005). Tracing suspended sediment sources in catchments and river systems, Science of the Total Environment, 344, 1-3, pp. 159-184.
  • 49. Walling, D., Collins, A.L. & Stroud, R.W. (2008). Tracing suspended sediment and particulate phosphorus sources in catchments, Journal of Hydrology, 350, 3-4, pp. 274-289.
  • 50. Wijngaard, R.R., van der Perk, M., van der Grift, B., Nijs, T.C.M. & Bierkens, M.F.P. (2017). The impact of climate change on metal transport in a lowland catchment, Water, Air, and Soil Pollution, 228, 3, pp. 1-20.
  • 51. Wilcke, W., Krauss, M. & Kobza, J. (2005). Concentrations and forms of heavy metals in Slovak soils, Journal of Plant Nutrition and Soil Science, 168, 5, pp. 676-686.
  • 52. Yang, D., Kanae, S., Oki, T., Koike, T. & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes, Hydrological Processs, 17, 14, pp. 2913-2928.
  • 53. Zemelka, G. & Szalinska, E. (2017). Preliminary studies of suspended sediment and sediments from the tributaries of drinking water reservoir, in: Abstract Book-poster, SETAC Europe 27th Annual Meeting, Brussels.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2baee9c9-4322-4dc9-a484-9c4c15422eda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.