PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation Parameters of PlSEM Plastic Explosive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PlSEM is a plastic explosive based on RDX, PETN and a non-explosive binder, and is used in linear shaped charges for demolition purposes. Its experimentally obtained detonation parameters are presented in the present paper. The detonation velocity was measured for cylindrical charges of various diameters, with and without confinement. The detonation pressure and particle velocity were determined using an impedance window matching technique, and cylinder tests were used to obtain the parameters of the JWL equation of state of the detonation products. Detonation velocities from 7.75 to 8.05 km·s–1 were obtained for unconfined charges with diameters from 4 to 8 mm, and from 8.15 to 8.24 km·s–1 for charges with 25 mm diameter. The experimentally determined detonation pressure was found to be 24.6 GPa.
Rocznik
Strony
487--503
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270, Rio de Janeiro, Brazil
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, CZ53210 Pardubice, Czech Republic
  • OZM Research, s.r.o., Blížňovice 32, CZ53862 Hrochův Týnec, Czech Republic
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, CZ53210 Pardubice, Czech Republic
autor
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, CZ53210 Pardubice, Czech Republic
Bibliografia
  • [1] Explosia. [Online available: https://explosia.cz/app/uploads/2016/03/pisem.pdf (Accessed: 21-JUN-2019)].
  • [2] Chirat, R.; Pittion-Rossillon, G.A. New Equation of State for Detonation Products. J. Chem. Phys. 1981, 74(8): 4634.
  • [3] Cooper, P.W. Explosives Engineering. Wiley-VCH Inc., New York, 1996; ISBN 0-471-18636-8.
  • [4] Baudin, G.; Serradeill, R. Review of Jones-Wilkins-Lee Equation of State. EPJ Web Conf. 2010, 10: 00021.
  • [5] Tete, A.D.; Deshmukh, A.Y.; Yerpude; R.R. Velocity of Detonation (VOD) Measurement Techniques – Practical Approach. Int. J. Eng. Techn. 2013, 2(3): 259-265.
  • [6] Eyring, H; Powell, R.E.; Duffey, G.E.; Parlin R.B. The Stability of Detonation. Chem. Rev. 1949, 45(1): 69-181.
  • [7] Souers, P.C.; Vitello, P.; Esen, S.; Kruttschnitt, J.; Bilgin, H.A. The Effects of Containment on Detonation Velocity. Propellants Explos. Pyrotech. 2004, 29(1): 19-26.
  • [8] Vantine, H.; Chan, J.; Erickson, L.; Janzen, J.; Weingart, R.; Lee, R. Precision Stress Measurements in Severe Shock-Wave Environments with Low-Impedance Manganin Gauges. Rev. Sci. Instrum. 1980, 51(1): 116-122.
  • [9] Duff, R.E.; Houston, E. Measurement of the Chapman-Jouguet Pressure and Reaction Zone Length in a Detonating High Explosive. J. Chem. Phys. 1955, 23(7): 1268-1273.
  • [10] Fedorov, A.V.; Mikhailov, A.L.; Antonyuk, L.K.; Nazarov, D.V.; Finyushin, S.A. Determination of Chemical Reaction Zone Parameters, Neumann Peak Parameters, and the State in the Chapman-Jouguet Plane in Homogeneous and Heterogeneous High Explosives. Combust. Explos. Shock Waves 2012, 48(3): 302-308.
  • [11] Bouyer, V.; Doucet, M.; Decaris, L. Experimental Measurements of the Detonation Wave Profile in a TATB Based Explosive. EPJ Web Conf. 2010, 10: 00030.
  • [12] Lorenz, K.T.; Lee, E.L.; Chambers, R. A Simple and Rapid Evaluation of Explosive Performance – the Disc Acceleration Experiment. Propellants Explos. Pyrotech. 2015, 40(1): 95-108.
  • [13] Gustavsen, R.L.; Bartram, B.D.; Sanchez, N. Shock Initiation Measurements using Multiple Samples Instrumented with PDV. Annual Photonic Doppler Velocimetry Workshop, 4th, Austin, Texas, 2009.
  • [14] Sheffield, S.A.; Bloomquist, D.D.; Tarver, C.M. Subnanosecond Measurements of Detonation Fronts in Solid High Explosives. J. Chem. Phys. 1984, 80(8): 3831- 3844.
  • [15] Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J. A Comparison of Methods for Detonation Pressure Measurement. Shock Waves 2017, 28(2): 207-225.
  • [16] Davis, W.C. Shock Waves; Rarefaction Waves; Equations of State. In: Explosive Effects and Applications (Zukas, J.A.; Walters, W.P., Eds), Springer, New York, 1998, pp. 47-114; ISBN 0-387-98201-9.
  • [17] Weseloh, W.N. JWL in a Nutshell. Los Alamos National Laboratory Report LAUR-14-24318, 2014.
  • [18] Elek, P.M.; Dzingalasevic, V.; Jaramaz, S.S.; Mickovic, D.M. Determination of Detonation Products’ Equation of State from Cylinder Test: Analytical Model and Numerical Analysis. Therm. Sci. 2015, 19(1): 35-48.
  • [19] Merchant, P.W.; White, S.J.; Collyer, A.M. A WBL-Consistent JWL Equation of State for the HMX-Based Explosive EDC37 from Cylinder Tests. Int. Det. Symp., Proc., 12th, San Diego, 2002.
  • [20] Menikoff, R. Detonation Waves in PBX 9501. Combust. Theor. Model. 2006, 10(6): 1003-1021.
  • [21] Hornberg, H.; Volk, F. The Cylinder Test in the Context of Physical Detonation Measurement Methods. Propellants Explos. Pyrotech. 1989, 14(5): 199-211.
  • [22] Lindsay, C.M.; Butler, G.C.; Rumchik, C.G.; Schulze, B.; Gustafson, R.; Maines, W.R. Increasing the Utility of the Copper Cylinder Expansion Test. Propellants Explos. Pyrotech. 2010, 35(5): 433-439.
  • [23] Souers, P.C.; Vitello, P.A. Detonation Energy Densities from the Cylinder Test. Lawrence Livermore National Laboratory Report LLNL-TR-666420, 2015.
  • [24] Jackson, S. The Detonation Cylinder Test: Determination of Full Wall Velocity and Shape from a Single Velocimetry Probe with an Arbitrary Angle. AIP Conf., Proc. 2017, 1793: 50017.
  • [25] Briggs, M.E.; Hill, L.; Hull, L.; Shinas, M. Applications and Principles of Photon Doppler Velocimetry for Explosives Testing. Los Alamos National Laboratory Report 10-01427, 2010.
  • [26] Pachman, J.; Künzel, M.; Kubat, K.; Selesovsky, J.; Marsalek, R.; Pospisil, M.; Kubicek, M.; Prokes, A. OPTIMEX: Measurement of Detonation Velocity with a Passive Optical Fibre System. Cent. Eur. J. Energ. Mater. 2017, 14(1): 233-250.
  • [27] Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 4.0.0 Manual: a High-Level Interactive Language for Numerical Computations. 2015, [Online available: http://www.gnu.org/software/octave/doc/interpreter/ (Accessed: 21-JUN-2019)].
  • [28] Hill, L.G.; Catanach, R.A. W-76 PBX 9501 Cylinder Tests. Los Alamos National Laboratory Report LA-13442-MS, 1998.
  • [29] Marsh, S.P. LASL Shock Hugoniot Data. University of California Press, 1980.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2f8a9e9c-319e-4a52-bbf8-cd93c64ad9a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.