PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of ampicillin on polar-endcapped phase : development of the HPLC method to achieve its correct dosage in cardiac surgery

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accurate, simple, and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of an antibiotic ampicillin (AMP) in human blood plasma. The SPE extraction was used for the sample preparation. Chromatographic separation was accomplished by a mobile phase containing 15 mM monopotassium phosphate solution of pH 3.3 and methanol (75:25, v/v) in an isocratic mode at a flow rate of 1.4 mL min⁻¹ at 30 °C. The separation was evaluated on a column with a new polar-endcapped C18 stationary phase Arion® Polar C18 or well-known phase Luna® Omega Polar C18. Excellent linearity (R2 0.9998) was shown over range 10–300 mg L⁻¹ with mean percentage recovery 90%. Peak shapes were symmetrical in both columns, Arion® Polar C18 and Luna® Omega Polar C18, with asymmetry factor of 1.0 and 1.4, tailing factor of 1.0 and 1.2, and retention factor of 4.6 and 5.6, respectively. The Arion® Polar C18 was almost 1.4-fold more effective than Luna® Omega Polar C18 phase. The LOQ for ampicillin was achieved 10 mg L⁻¹ for Luna® Omega Polar C18 and 5 mg L⁻¹ for Arion® Polar C18 using 20 µL of a solution containing 0.24 mg mL⁻¹ of cephalexin as an internal standard. A number of articles dealing with the determination of ampicillin is limited, therefore, this study showed the HPLC method suitable for the determination of AMP in human blood plasma from patient who underwent elective cardiac surgical revascularization. In addition, the determination of AMP was also performed for the first time using an Arion® Polar C18 column, which effectively separated AMP from other compounds present in human blood plasma. This new polar-endcapped phase can help in separation of polar antibiotics or other polar compounds, which are unsuccessfully separated on conventional C18 column, and thus can help during method development.
Słowa kluczowe
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 43 poz., tab., rys., wykr.
Twórcy
  • Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
  • Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
autor
  • Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
autor
  • Department of Cardiac Surgery, University Hospital Olomouc, Olomouc, Czech Republic
  • Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
Bibliografia
  • 1 Blidar, A.; Feier, B.; Tertis, M.; Galatus, R.; Cristea, C. Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection. Anal. Bioanal. Chem. 2019, 411, 1053–65.
  • 2. Amini, H.; Ahmadiani, A. Sensitive determination of clarithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J. Chrom. B: Anal. Tech. Biomed. Life Sci. 2005, 817, 193–7.
  • 3. Legrand, T.; Chhun, S.; Rey, E.; Blanchet, B.; Zahar, J. R.; Lanternier, F.; Pons, G.; Jullien, V. Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultrafiolet detection. J. Chrom. B: Anal. Tech. Biomed. Life Sci. 2008, 875, 551–6.
  • 4. do Nascimento, T. G.; Aragao, C. F. S.; de Medeiros, F. D.; Oliveira, E. D.; Macedo, R. O. Validation of a method for determination of ampicillin in human plasma using LC-DAD. J. Chrom. Sci. 2009, 47, 749–55.
  • 5. Pickering, M.; Brown, S. Quantification and validation of HPLC-UV and LC-MS assays for therapeutic drug monitoring of ertapenem in human plasma. Biomed. Chrom. 2013, 27, 568–74.
  • 6. Legrand, T.; Vodovar, D.; Tournier, N.; Khoudour, N.; Hulin, A. Simultaneous determination of eight b-lactam antibiotics, amoxicillin, cefazolin, cefepime, cefotaxime, ceftazidime, cloxacillin, oxacillin, and piperacillin, in human plasma by using ultra-high-performance liquid chromatography with ultraviolet detection. Antimicrob. Agents Chemother. 2016, 60, 4734–42.
  • 7. Cairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B. M. A new HPLC-DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chrom. 2020, 34, e4880.
  • 8. Fikarova, K.; Horstkotte, B.; Machian, D.; Sklenarova, H.; Solich, P. Lab-In-Syringe for automated double-stage sample preparation by coupling salting out liquid-liquid extraction with online solid-phase extraction and liquid chromatographic separation for sulfonamide antibiotics from urine. Talanta 2021, 221, 121427.
  • 9. Jariwala, F. B.; Hibbs, J. A.; Zhuk, I.; Sukhishvili, S. A.; Attygalle, A. B. Rapid determination of aminoglycosides in pharmaceutical preparations by electrospray ionization mass spectrometry. J. Anal. Sci. Tech. 2020, 11, 2.
  • 10. Tian, H. J.; Liu, T.; Mu, G. D.; Chen, F. M.; He, M. Y.; You, S.; Yang, M. L.; Li, Y. L.; Zhang, F. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta 2020, 219, 121282.
  • 11. Wagil, M.; Kumirska, J.; Stolte, S.; Puckowski, A.; Maszkowska, J.; Stepnowski, P.; Bialk-Bielinska, A. Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland. Sci. Total Environ. 2014, 493, 1006–13.
  • 12. El-bagary, R.; El-Zaher, A. A.; Elkady, E.; Mandour, A. A. Simultaneous determination of ciprofloxacin hydrochloride and metronidazole in spiked human plasma by ultra performance liquid chromatography-tandem mass spectroscopy. J. App. Pharm. Sci. 2016, 6(3), 41–7.
  • 13. Zhi, S. L.; Zhou, J.; Liu, H. X.; Wu, H. H.; Zhang, Z. L.; Ding, Y. Z.; Zhang, K. Q. Simultaneous extraction and determination of 45 veterinary antibiotics in swine manure by liquid chromatography-tandem mass spectrometry. J. Chromr. B: Anal. Tech. Biomed. Life Sci. 2020, 1154, 122286.
  • 14. Baikeli, Y.; Mamat, X.; He, F.; Xin, X. L.; Li, Y. T.; Aisa, H. A.; Hu, G. Z. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal-organic framework (type Fe/ZIF-8). Ecotoxicol. Environ. Saf. 2020, 204, 111066.
  • 15. Pollap, A.; Baran, K.; Kuszewska, N.; Kochana, J. Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J. Electroan. Chem. 2020, 878, 114574.
  • 16. Yue, X.; Li, Z.; Zhao, S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem. J. 2020, 159, 105440.
  • 17. Grayson, M. L.; Cosgrove, S. E.; Crowe, S.; Hope, W.; McCarthy, J. S.; Mills, J.; Mouton, J. W.; Paterson, D. L. Kucers’ the use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, 7th ed.; CRC Press: Boca Raton, 2018.
  • 18. Mai, X. L.; Pham, T. V.; Han, G. H.; Kum, S. J.; Woo, S. H.; Kang, J. S.; Woo, M. H.; Na, D. H.; Chun, I. K.; Kim, K. H. Simultaneous determination of ampicillin sodium and sulbactam sodium in powder for injection by HPLC. Anal. Sci. Technol. 2019, 32, 147–54.
  • 19. Layne, J. Characterization and comparison of the chromatographic performance of conventional, polar-embedded, and polar-endcapped reversed-phase liquid chromatography stationary phases. J. Chrom. A. 2002, 957, 149–64.
  • 20. Chamseddin, C.; Jira, T. Evaluation of the chromatographic performance of conventional, polar-endcapped and calixarene-bonded stationary phases for the separation of water-soluble vitamins. Chromatographia 2013, 76, 449–57.
  • 21. Coym, J. W. Comparison of retention on traditional alkyl, polar endcapped, and polar embedded group stationary phases. J. Sep. Sci. 2008, 31, 1712–8.
  • 22. Aghaei, A.; Jazi, M. E.; Mlsna, T. E.; Kamyabi, M. A. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 3002–8.
  • 23. Veloso, W. B.; Ribeiro, G. A. C.; da Rocha, C. Q.; Tanaka, A. A.; da Silva, I. S.; Dantas, L. M. F. Flow-through amperometric determination of ampicillin using a copper electrode in a batch injection analysis system. Measurement 2020, 155, 107516.
  • 24. Phenomenex. https://phenomenex.blob.core.windows.net/documents/6340a07c-e563-4342-87b0-305468f0c8f6.pdf (accessed July 23, 2021).
  • 25. O’Gara, J. E.; Walsh, D. P.; Phoebe, C. H.; Alden, B. A.; Bouvier, I. S. P.; Iraneta, P. C.; Capparella, M.; Walter, T. H. Embedded-polar-group bonded phases for high performance liquid chromatography. LC GC N. Am. 2001, 19(6), 632–42.
  • 26. Ravisankar, P.; Anusha, S.; Supriya, K.; Kumar, U. A. Fundamental chromatographic parameters. Int. J. Pharm. Sci. Rev. Res. 2019, 55(2), 9, 46–50.
  • 27. Soczewiński, E.; Wachtmeister, C. A. The relation between the composition of certain ternary two-phase solvent systems and RM values. J. Chromatogr. A. 1962, 7, 311–20.
  • 28. Snyder, L. R.; Dolan, J. W.; Gant, J. R. Gradient elution in high-performance liquid-chromatography .1. theoretical basis for reversed-phase systems. J. Chromatogr. 1979, 165, 3–30.
  • 29. Valko, K.; Slegel, P. New chromatographic hydrophobicity index (phi-0) based on the slope and the intercept of the log-k’ versus organic-phase concentration plot. J. Chromatogr. 1993, 631, 49–61.
  • 30. Nasal, A.; Siluk, D.; Kaliszan, R. Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr. Med. Chem. 2003, 10, 381–426.
  • 31. Klose, M. H. M.; Theiner, S.; Varbanov, H. P.; Hoefer, D.; Pichler, V.; Galansk, M.; Meier-Menches, S. M.; Keppler, B. K. Development and validation of liquid chromatography-based methods to assess the lipophilicity of cytotoxic platinum(IV) complexes. Inorganics 2018, 6, 14.
  • 32. Pubchem. https://pubchem.ncbi.nlm.nih.gov/compound/Ampicillin (accessed July 22, 2021).
  • 33. Danelon, C.; Nestorovich, E. M.; Winterhalter, M.; Ceccarelli, M.; Bezrukov, S. M. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 2006, 90(5), 1617–27.
  • 34. Colin, P.; De Bock, L.; T’Jollyn, H.; Boussery, K.; Van Bocxlaer, J. Development and validation of a fast and uniform approach to quantify beta-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta 2013, 103, 285–93.
  • 35. El-Najjar, N.; Jantsch, J.; Gessner, A. The use of liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of antibiotics in cancer patients. Clin.Chem. Lab. Med. 2017, 55, 1246–61.
  • 36. Huang, C. R.; Gao, J.; Miao, L. Y. Simultaneous determination of flucloxacillin and ampicillin in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and subsequent application to a clinical study in healthy Chinese volunteers. J. Pharm. Biomed. Anal. 2012, 59, 157–61.
  • 37. Majors, R. E.; Przybyciel, M. Columns for reversed-phase LC separations in highly aqueous mobile phases. LC GC Eur. 2002, 2–7.
  • 38. Dolan, J Count the cost, Part II: increasing resolution by increasing retention. LC GC N. Am. 2017, 35(4), 240–5.
  • 39. Hash, C.; Fujita, T. p-σ-p analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964, 86(8), 1616–26.
  • 40. Leo A.; Hansch C.; Elkins D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525-+.
  • 41. Vallaro, M.; Ermondi, G.; Caron, G. Chromatographic HILIC indexes to characterize the lipophilicity of zwitterions. Eur. J. Pharm. Sci. 2020, 145, 8.
  • 42. Grover, M.; Gulati, M.; Singh, B.; Singh, S. RP-HPLC determination of lipophilicity of 22 penicillins, their correlation with reported values and establishment of quantitative structure-log K-W relationships. Qsar. Comb. Sci. 2005, 24, 639–48.
  • 43. Chromservis. https://www.chromservis.eu/p/arion-polar-c18-hplc-column-5-0-m-250-mm-4-6-mm?lang5EN (accessed July 23, 2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66ccd737-de6f-4de9-9c71-adfdd2bf113f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.