PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Higher-order finite element particle tracing in external electrostatic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering 2012 (23-24.04.2012; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
Simulation of movement of a large number of charged particles in external electrostatic field is of great importance for a correct design of separators whose aim is to select them according to the sign of their charge. The paper deals with modeling of their trajectories in a specific arrangement consisting of a profile vessel equipped with two electrodes and several collecting bins. Electric field between the electrodes is determined using a fully adaptive higher-order finite element method. The movement (velocities and trajectories) of the particles affected by electric field, gravity and aerodynamic resistance is modeled by an adaptive Runge-Kutta-Fehlberg method with an appropriately varying time step. On the other hand, their charges are rather low, so that it is possible to neglect the Coulomb forces acting among them. The methodology is illustrated by a typical example whose results are discussed.
Rocznik
Tom
Strony
23--31
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • University of West Bohemia
autor
  • University of West Bohemia
autor
  • University of West Bohemia
Bibliografia
  • [1] Pearse M.J., Hicky T.J., The Separation of Mixed Plastics Using a Dry Triboelectric Technique, Resource Recovery and Conservation, Volume 3, No. 2, pp. 179-190, 1978.
  • [2] Yanar D.K, Kwetkus B.A., Electrostatic Separation of Polymer Powders, Journal of Electrostatics, Volume 36, No. 2-3, pp. 257-266, 1995.
  • [3] Higashyiama Y., Asano, K., Recent Progress in Electrostatic Separation Technology, Particulate Science and Technology, Volume 16, No. 1, pp. 77-90, 1998.
  • [4] Inculet I.I., Castle G.S.P., Brown J.D., Electrostatic Separation for Recycling, Particulate Science and Technology, Volume 16, No. 1, pp. 91-100, 1998.
  • [5] Dodbiba G., Shibayama A., Miyazaki T., Fujita T., Triboelectrostatic Separation of ABS, PS and PP Plastic Mixtures, Material Transactions, Volume 44, No. 1, pp. 161-166, 2003.
  • [6] Wei J., Realff M.J., Design and Optimization of Free-Fall Electrostatic Separators for Plastics Recycling, AIChE Journal, Volume 49, No. 12, pp. 3138-3149, 2003.
  • [7] Saeki M., Triboelectric Separation of Three-Component Plastic Mixture, Particulate Science and Technology, Volume 26, No. 5, pp. 494-506, 2008.
  • [8] Tilmatine A., Medles K., Younes M., Bendaoud A., Dascalescu L., Roll-Type versus Free-Fall Electrostatic Separation of Tribocharged Plastic Particles. IEEE Trans. Industry Appl., Volume 46, No. 4, 1564-1569, 2010.
  • [9] Moesner F.M., Toshiro H., Contactless Manipulation of Microparts by Electric Field Traps. Proc. SPIE's Int. Symposium on Microrobotics and Microsystem Fabrication, October 1997, Pittsburgh, USA, Volume 3202, pp. 168-175.
  • [10] Duff N., Lacks D.J., Particle Dynamics Simulation of the Effect of Particle Size Distribution on Triboelectric Charging in Granular Insulator System, Journal of Physics, Conference Series, Volume 142, No. 1, 2008, doi: 10.1088/1742-6596/142/1/012078.
  • [11] Kuczmann M., Iváyi A., The Finite Element Method in Magnetics, Akademiai Kiadó, Budapest, 2008.
  • [12] Code Agros2D: http://agros2d.org.
  • [13] Code Hermes2D: http://hpfem.org/hermes.
  • [14] Šolín P., Segeth K., Doležel I., Higher-Order Finite Element Methods, Chapman & Hall/CRC, Boca Raton, FL, USA, 2003.
  • [15] Šolín P., Červený J., Doležel I., Arbitrary-Level Hanging Nodes and Automatic Adaptivity in the hp-FEM”, Math. Comput. Simul., Volume 77, No. 1, pp. 117-132, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1850033f-4ad2-4205-8b4e-128007bd7491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.