PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SRH suppression mechanism in a non-equilibrium MWIR HgCdTe photodiode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The operation of narrow-gap semiconductor devices under non-equilibrium mode is used at temperatures where the materials are normally intrinsic. The phenomenon of minority carrier exclusion and extraction was particularly discussed in the case of the suppression of Auger thermal generation in heterojunction photodiodes, especially important in the long-wave infrared range. This paper shows that the reduction of the dark current in the HgCdTe photodiode operating in the mid-wave infrared range is primarily the result of suppression of the Shockley-Read-Hall generation in the non-equilibrium absorber. Under a reverse bias, the majority carrier concentration is held equal to the majority carrier doping level. This effect also leads to a decreased majority carrier population at the trap level and an effective increase in the carrier lifetime. The analysed device was with the following design: p+-Bp cap-barrier unit, p-type absorber doped at the level of 8 ·10¹⁵ cm¯³, and wide-bandgap N+ bottom contact layer. At room temperature, the lowest dark current density of 3.12 ·10¯¹ A/cm² was consistent with the theoretically predicted Shockley-Read-Hall suppression mechanism, about two times smaller than for the equilibrium case.
Rocznik
Strony
art. no. e144548
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00 908 Warsaw, Poland
Bibliografia
  • [1] Van Roosbroeck, W. & Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558-1560 (1954). https://doi.org/10.1103/PhysRev.94.1558
  • [2] Beattie, A. R. & Landsberg, P. T. Auger effect in semiconductors. Proc. Math. Phys. Eng. Sci. 249, 16-29 (1959). https://www.jstor.org/stable/100562
  • [3] Shockley, W. & Read, W. T. Statistics of recombinations of holes and electrons. Phys. Rev. 87, 835-842 (1952). https://doi.org/10.1103/PhysRev.87.835
  • [4] Hall, R. N. Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952). https://doi.org/10.1103/PhysRev.87.387
  • [5] Humphreys, R. G. Radiative lifetime in semiconductors for infrared detectors. Infrared Phys. 26, 337-342 (1986). https://doi.org/10.1016/0020-0891(86)90054-0
  • [6] Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014). https://doi.org/10.1117/3.1002766
  • [7] Ashley, T., Elliott, C. T. & Harker, A. T. Non-equilibrium modes of operation for infrared detectors. Infrared Phys. 26, 303-315 (1986). https://doi.org/10.1016/0020-0891(86)90008
  • [8] Elliott, C. T. Non-equilibrium modes of operation of narrow-gap semiconductor devices. Semicond. Sci. Technol. 5, S30-S37 (1990). https://doi.org/10.1088/0268-1242/5/3S/008
  • [9] Casselman, T. N. Calculation of the Auger lifetime in p‐type Hg1-xCdxTe. J. Appl. Phys. 52, 848 (1981). https://doi.org/10.1063/1.328426
  • [10] Berdahl, P., Malutenko, V. & Morimoto, T. Negative luminescence of semiconductors. Infrared Phys. 29, 667-672 (1989). https://doi.org/10.1016/0020-0891(89)90107-3
  • [11] Ashley, T. et al. Negative luminescence from In1–xAlxSb and CdxHg1-xTe diodes. Infrared Phys. Technol. 36, 1037-1044 (1995). https://doi.org/10.1016/1350-4495(95)00043-7
  • [12] Lee, D. et al. Law 19 - The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  • [13] Kopytko, M. et al. Investigation of syrface leakage current in MWIR HgCDTe and InAsSb barrier detectors. Semicond. Sci. Technol. 33, 125010 (2018). https://doi.org/10.1088/1361-6641/aae768
  • [14] Blakemore, J. S. Semiconductor Statistics. (Pergamon Press, New York, 1962). https://doi.org/10.1016/C2013-0-01678-7
  • [15] Lopes, V. C., Syllaios, A. J. & Chen, M. C. Minority carrier lifetime in mercury cadmium telluride. Semicond. Sci. Technol. 8, 824 (1993). https://doi.org/10.1088/0268-1242/8/6S/005
  • [16] Kane, E. O. Theory of tunnelling. J. Appl. Phys. 32, 83-91 (1961). https://doi.org/10.1063/1.1735965
  • [17] Blanks, D. K., Beck, J. D., Kinch, M. A. & Colombo, L. Band-to-band tunnel processes in HgCdTe: Comparison of experimental and theoretical studies. J. Vac. Sci. Technol. A 6, 2790 (1988). https://doi.org/10.1116/1.575508
  • [18] Sah, C. T. Electronic processes and excess currents in gold-doped narrow silicon junctions. Phys. Rev. 123, 1594 (1961). https://doi.org/10.1103/PhysRev.123.1594
  • [19] Hansen, G. L., Schmit, J. L. & Casselman, T. N. Energy gap versus alloy composition and temperature in Hg1-x CdxTe. J. Appl. Phys. 53, 7099-7101 (1982). https://doi.org/10.1063/1.330018
  • [20] Hansen, G. L. & Schmit, J. L. Calculation of intrinsic carrier concentration in Hg1-x CdxTe. J. Appl. Phys. 54, 1639-1640 (1983). https://doi.org/10.1063/1.332153
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82d1486b-91c4-406d-a784-51faec8629a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.