PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eco-friendly synthesis of ethyl 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate (4) ligand (L) using microwave irradiation technique was described. The structure of thioxoimidazolidine derivative ligand compound has been established based on different types of analyses such as infrared, 1H-NMR, 13C-NMR, and mass spectra as well as elemental analysis. The copper, cobalt, and nickel(II) complexes with molecular for-mula [M(L)(H2O)4]Cl2 (where M = Co(II), Ni(II), and Cu(II), L = thioxoimidazolidine derivative ligand), have been prepared and well-characterized using microanalytical, conductivity measurements, magnetic, spectroscopic, and physical analyses. Upon the outcome results of analyses, the stoichiometry of the synthesized complexes is 1:1 (M:L). The molar conductance values concluded that the behavior of metal complexes was electrolytes. The 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate chelate acts as a monovalent bidentate fashion via nitrogen and oxygen atoms of both thioxoimidazolidine and propanoate ester moieties. The geometric structures of the synthesized metal complexes are an octahedral confi guration based on spectroscopic and magnetic moment studies. The thermogravimetric assignments deduced that the presence of four coordinated water molecules. The synthesized copper(II), cobalt(II), and nickel(II) complexes were biologically checked against G+ and G- bacteria and two species of fungi (Aspergillus Nigaer, and Penicillium Sp.).
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
  • Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, KSA
Bibliografia
  • 1. Johnson, T.B. & Chernoff, L.H.J. (1912). Hydantoins: Synthesis of 5-Thiohydantoins [Nineteenth Paper]. Am. Chem. Soc. 34(9), 1208–1213. DOI: 10.1021/ja02210a011.
  • 2. Seki, M., Kajiwara, D., Mizutani, H. & Minamiguchi, K. (2020). Analysis of novel enzalutamide-resistant cells: up-regulation of testis-specifi c Y-encoded protein gene promotes the expression of androgen receptor splicing variant 7 Transl. Cancer Res., 2020, 9(10), 6232–6245. DOI: 10.21037/tcr-20-1463.
  • 3. Kyriakopoulos, C.E., Heath, E.I., Ferrari, A., Sperger, J.M., Singh, A., Perlman, S.B., Roth, A.R., Perk, T.G., Model-ska, K. & Porcari, A., et al. (2020). Exploring Spatial-Temporal Changes in 18F-Sodium Fluoride PET/CT and Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide. J. Clin. Oncol. 38(31), 3662–3671. DOI: 10.1200/jco.20.00348.
  • 4. Al-Salama, Z.T., (2018). Apalutamide: First Global Ap-proval, Drugs, 78, 699–705. DOI: 10.1007/s40265-018-0900-z.
  • 5. Dellis, A.E. & Papatsoris, A.G., (2018). Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. Expert. Opin. Investig. Drugs. 27(6), 553–559. DOI: 10.1080/13543784.2018.1484107.
  • 6. Chong, J.T, Oh, W.K. & Liaw, B.C., (2018). Profile of apalutamide in the treatment of metastatic castration-resistant prostate cancer: evidence to dateOnco. Targets Ther. 11, 2141–2147. DOI: 10.2147/OTT.S147168.
  • 7. Qamar, R., Saeed, A., Saeed, M. & Seo, S.Y., et al., (2018). Synthesis and enzyme inhibitory kinetics of some novel 3-(substituted benzoyl)-2-thioxoimidazolidin-4-one derivatives as α-glucosidase/α-amylase inhibitors. Med. Chem. Res. 27(5), 1528–1537. DOI: 10.1007/s00044-018-2170-4.
  • 8. Desai, N.C., Vaghani, H.V., Karkar, T.J., Patel, B.Y. & Jadeja, K.A., (2017). Synthesis and antimicrobial studies of 1,2,3,4-tetrahydropyrimidine bearing imidazole analogues. Indian. J. Chem., 2017, 56B, 438–446. http://nopr.niscair.res.in/handle/123456789/41188.
  • 9. Chérouvrier, J.R., Carreaux, F. & Bazureau, J.P., (2004). Reactivity of 2-Thiohydantoins Towards Various Electrophilic Reagents: Applications to the Synthesis of New 2-Ylidene-3,5-dihydro-4H-imidazol-4-ones. Molecules, 9(10), 867–875. DOI: 10.1002/chin.200306129.
  • 10. Khodair, A.I., El-Subbagh, H.I., El-Emam, A.A. (1997). Synthesis of certain 5-substituted 2-thiohydantoin derivatives as potential cytotoxic and antiviral agents. Boll Chim Farm, 136, 561–567. Molecules 2006, 11 749.
  • 11. Wang, Z.D., Sheikh, S.O., Zhang, Y. (2006). A Simple Synthesis of 2-Thiohydantoins. Molecules, 11, 739–750. DOI: 10.3390/11100739.
  • 12. Takahashi, A., Matsuoka, H., Ozawa, Y. & Uda, Y. (1998). Antimutagenic Properties of 3,5-Disubstituted 2-Thiohydantoins. J. Agric. Food Chem., 46, 5037–5042. DOI:10.1021/jf980430x.
  • 13. Froelich, E.; Fruehan, A.; Jackman, M.; Kirchner, F.K.; Alexander, E.J.; Archer, S. (1954). 5-Heptyl-2-Thiohydantion, A New Antitubercular Agent. J. Am. Chem. Soc. 1954, 76, 3099–3100. DOI: 10.1021/ja01640a088.
  • 14. Al-Obaid, A.M.; El-Subbagh, H.I.; Khodair, A.I. & El-mazar, M.M. (1996). 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 7, 873. DOI: 10.1097/00001813-199611000-00009.
  • 15. Lacroix, G., Bascou, J.-P., Perez, J. & Gadras, A.U.S. Pat. 6,018,052, 2000.
  • 16. Lacroix, G., Bascou, J.P., Perez, J. & Gadras, A.U.S. Pat. 5,650,519, 1997.
  • 17. Marton, J., Enisz, J., Hosztafi , S. & Timar, T.J. Agric. (1993). Preparation and Fungicidal Activity of 5-Substituted Hydantoins and Their 2-Thio Analogs. Food Chem., 41, 148–152. DOI: 10.1021/jf00025a031.
  • 18. El-Barbary, A.A., Khodair, A.I., Pedersen, E.B. & Nielsen, C.J. (1994). S-Glucosylated hydantoins as new antiviral agents. Med. Chem., 37, 73–77. DOI: 10.1021/jm00027a009.
  • 19. Tompkins, J.E. (1986). 5,5-Diaryl-2-thiohydantoins and 5,5-diaryl N3-substituted 2-thiohydantoins as potential hypo-lipidemic agents. J. Med. Chem., 29, 855–589. DOI:10.1021/jm00155a042.
  • 20. Elwood, J.C., Richert, D.A. & Westerfeld, W.W. (1972). A comparison of hypolipidemic drugs in the prevention of an orotic acid fatty liver. Biochem. Pharmacol., 21, 1127–1132. DOI: 10.1016/0006-2952(72)90106-2.
  • 21. Marx, J.V., Richert, D.A. & Westerfeld, W.W. (1970). Pe-ripheral inhibition of thyroxine by thiohydantoins derived from amino acids. J. Med. Chem. 1970, 13, 1179–1181. DOI: 10.1021/jm00300a036.
  • 22. Cheymol, J., Chabrier, P., Gay, Y. & Lavedan, J.P. (1951). [Inhibitory action on thyroid & molecular structure; 2. study of dithiocarbamates & their derivatives]. Arch. Int. Pharmacodyn. Ther. 1951, 88, 342–350.
  • 23. Cheymol, J., Chabrier, P. & Gay, Y., Arch. (1951). [Antithyroid action and molecular structure. I. A study of thiohydantoins and their methyl esters]. Int. Pharmacodyn. Ther. 1951, 87, 321–323. DOI: 10.1042/bj0490125.
  • 24. Archer, S., Unser, M.J. & Froelich, E. (1956). Some 5-(Oxoalkyl)-2-thiohydantoins and Their Derivatives. J. Am. Chem. Soc. 1956, 78, 6182. DOI: 10.1021/ja01604a064.
  • 25. Curran, A.C.W.U.S. Pat. 3,984,430, 1976.
  • 26. Nagpal, K.L.U.S. Pat. 4,473,393, 1984.
  • 27. Mo, B., Li, J. & Liang, S. (1997). A method for prepara-tion of amino acid thiohydantoins from free amino acids acti-vated by acetyl chloride for development of protein C-terminal sequencing. Anal. Biochem., 249(1), 207–211. DOI: 10.1006/abio.1997.2156.
  • 28. Cromwellt, L.D., Stark, G.R. (1969). Determination of the carboxyl termini of proteins with ammonium thiocyanate and acetic anhydride, with direct identifi cation of the thiohydan-toins. Biochemistry, 8, 4735–4740. DOI:10.1021/bi00840a012,
  • 29. Nelson, J.V., Helber, M.J. & Brick, M.C.U.S. Pat. 5,695,917, 1997.
  • 30. Ooi, T., Fukui, T., Kobayashi, M., Ueno, K., Kagami, K., Suzuki, M. & Nishino, K.U.S. Pat. 5,482,814, 1996.
  • 31. Kandil, S.S., El-Hefnawy, G.B. & Baker, E.A. (2004). Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2- hydroxyphenylazo)-2-thiohydantoin complexes of cobalt(II), nickel(II) and copper(II). Thermochim. Acta, 414, 105–113. DOI: 10.1016/j.tca.2003.11.021.
  • 32. Verma, S., Shrivastva, S. & Rani, P. (2012). Synthesis and spectroscopic studies of mixed ligand complexes of transition and inner transition metals with a substituted benzimidazole derivative and RNA bases. J. Chem. Pharm. Res., 2012, 4(1), 693–699.
  • 33. Usharani, M., Akila, E. & Rajavel, R. (2012). Mixed ligand Schiff base complexes: synthesis, spectral characteriza-tion and antimicrobial activity. J. Chem. Pharm. Res., 2012, 4(1), 726–731.
  • 34. Andrade, A., Namora, S.F. & Woisky, RG., (2000). Synthesis and characterization of a diruthenium–ibuprofenato complex: Comparing its anti-infl ammatory activity with that of a copper(II)–ibuprofenato complex. J. Inorg. Biochem., 81, 23–27. DOI: 10.1016/S0162-0134(00)00106-9.
  • 35. Ray, S.M. & Lahiri, S.C. (1990). Some refl ections on “Future organizational trends of the ASA. J. Indian Chem. Soc., 67, 324–326. DOI: 10.1007/BF02691840.
  • 36. Mathew, M., Palenik, G.J. & Clark, G.R. (1973). Crystal and molecular structures of chlorobis(acetone thiosemicarba-zone)nickel(II) chloride monohydrate and nitratobis(acetone thiosemicarbazone)nickel(II) nitrate monohydrate. Inorg. Chem., 12(2), 446–451. DOI: 10.1021/ic50120a041.
  • 37. Arya, P., Singh, N., Gadi, R. & Chandra, S. (2010). Preparation, characterization and antiulcer activity of mixed ligand complex of Zn (II) with Famotidine and Glycine. J. Chem. Pharm. Res., 2(6), 253–257.
  • 38. Hughes, M.N., Wilkinson, G., Gillard, R.D. & McCleverty, J.A. Comprehensive Coordination Chemistry, Vol 6, Pergamon Press, Oxford, 1987.
  • 39. Raman, M., Muthuraj, P.V., Ravichandran, S. & Kuland-aisamy, A., (2003). Synthesis, characterisation and electrochemi-cal behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone andp-anisidine and their antimicrobial activity. Acad. Sci (Chem. Sci.), 2003, 115(3), 161–167. https://www.ias.ac.in/article/fulltext/jcsc/115/03/0161-0167.
  • 40. Bauer, A.W., Kirby, W.M., Sherris, C. & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Amer. J. Clinical Pathology., 45, 493. DOI: 10.1093/ajcp/45.4_ts.493.
  • 41. Pfaller, M.A., Burmeister, L., Bartlett, M.A. & Rinaldi, M.G., (1988). Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 26 (1988) 1437–1441.
  • 42. National Committee for Clinical Laboratory Standards, Performance Vol. antimicrobial susceptibility of Flavobacteria, 1997.
  • 43. National Committee for Clinical Laboratory Standards. 1993. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa.
  • 44. NakamotoK, Infra-Red Spectra of Inorganic and Coordinated Compounds, John Wiley, New York (1963) p. 167.
  • 45. Randall, H.M., Fowler, R.G., Fuson, N. & Dangl, J.R. Infrared Determination of Organic Structures. D. Van Nostrand, New York (1949).
  • 46. Lever, A.B.P., Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.
  • 47. Lever, A.B.P. & Mantovani, E. (1971). Farinfrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 1971, 10, 817–826. DOI: 10.1021/ic50098a031.
  • 48. Drago., R.S., Physical Methods in Inorganic Chemistry, Rein Hold Publishing Corporation, New York (1976) p. 395.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47f4874c-b799-4f9a-9a52-af0f7f47779c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.