PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non integer order, state space model of heat transfer process using Caputo-Fabrizio operator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is intended to show a new state space, non integer order model of an one-dimensional heat transfer process. The proposed model derives directly from time continuous, state space semigroup model. The fractional order derivative with respect to time is by a new operator proposed by Caputo and Fabrizio, the non integer order spatial derivative is expressed by Riesz operator. The Caputo-Fabrizio operator can be directly implementated using MATLAB, because it does not require us to apply any approximation. Analytical formulae of step response are given, the system decomposition was discussed also. Main results from the paper show that the use of Caputo Fabrizio operator allows us to obtain the simple in implementation and analysis model of the considered heat transfer process. The accuracy of the proposed model in the sense of a MSE cost function is satisfying.
Rocznik
Strony
249--255
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] R. Almeida and D.F.M. Torres, “Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives”, Communications in Nonlinear Science and Numerical Simulation, 16(3), 1490–1500, 2011.
  • [2] A. Atangana and D. Baleanu, “New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer”, Thermal Sciences, 20(2), 763–769, 2016.
  • [3] B. Baeumer, S. Kurita, and M. Meerschaert, “Inhomogeneous fractional diffusion equations. Fractional Calculus and Applied Analysis, 8(4), 371–386, 2005.
  • [4] K. Bartecki, “A general transfer function representation for a class of hyperbolic distributed parameter systems”, International Journal of Applied Mathematics and Computer Science, 23(2), 291–307, 2013.
  • [5] R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, “Fractional order systems: Modeling and control applications”, in: Leon O. Chua, editor, World Scientific Series on Nonlinear Science, 1–178, University of California, Berkeley, 2010.
  • [6] M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel”, Progress in Fractiona Differentiation and Applications, 1(2), 1–13, 2015.
  • [7] S. Das, Functional Fractional Calculus for System Identification and Control. Springer, Berlin, 2010.
  • [8] M. Dlugosz and P. Skruch, “The application of fractional-order models for thermal process modelling inside buildings”, Journal of Building Physics, 1(1), 1–13, 2015.
  • [9] A. Dzielinski, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech., 58(4), 583–592, 2010.
  • [10] C.G. Gal and M. Warma, “Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions”, Evolution Equations and Control Theory, 5(1), 61–103, 2016.
  • [11] T. Kaczorek, Selected Problems of Fractional Systems Theory. Springer, Berlin, 2011.
  • [12] T. Kaczorek, “Singular fractional linear systems and electrical circuits”, International Journal of Applied Mathematics and Computer Science 21(2), 379–384, 2011.
  • [13] T. Kaczorek, “Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems”, International Journal of Applied Mathematics and Computer Science 26(2), 277–283, 2016.
  • [14] T. Kaczorek, “Minimum energy control of fractional positive continuous-time linear systems using caputo-fabrizio definition”, Bull. Pol. Ac.: Tech., 65(1), 45–51, 2017.
  • [15] T. Kaczorek and K. Borawski, “Fractional descriptor continuoustime linear systems described by the caputo-fabrizio derivative”, International Journal of Applied Mathematics and Computer Science, 26(3), 533–541, 2016.
  • [16] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, Bialystok, 2014.
  • [17] A. Kochubei, “Fractional-parabolic systems”, preprint, arxiv: 1009.4996 [math.ap], 2011.
  • [18] W. Mitkowski, Stabilization of Dynamic Systems (in Polish). WNT, Warszawa, 1991.
  • [19] W. Mitkowski, “Approximation of fractional diffusion-wave equation”, Acta Mechanica et Automatica, 5(2), 65–68, 2011.
  • [20] A. Obraczka, “Control of heat processes with the use of noninteger models”, PhD thesis, AGH University, Krakow, Poland, 2014.
  • [21] K. Oprzedkiewicz, “The interval parabolic system”, Archives of Control Sciences 13(4), 415–430, 2003.
  • [22] K. Oprzedkiewicz, “A controllability problem for a class of uncertain parameters linear dynamic systems”, Archives of Control Sciences, 14(1), 85–100, 2004.
  • [23] K. Oprzedkiewicz, “An observability problem for a class of uncertain- parameter linear dynamic systems”, International Journal of Applied Mathematics and Computer Science, 15(3), 331–338, 2005.
  • [24] K. Oprzedkiewicz and E. Gawin, “A non-integer order, state space model for one dimensional heat transfer process”, Archives of Control Sciences, 26(2), 261–275, 2016.
  • [25] K. Oprzedkiewicz, E. Gawin, and W. Mitkowski, “Modeling heat distribution with the use of a non-integer order, state space model”, International Journal of Applied Mathematics and Computer Science, 26(4), 749–756, 2016.
  • [26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  • [27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [28] E. Popescu, “On the fractional cauchy problem associated with a feller semigroup”, Mathematical Reports, 12(2), 181–188, 2010.
  • [29] A. Rauh, L. Senkel, H. Aschemann, V.V. Saurin, and G.V. Kostin, “An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems”, International Journal of Applied Mathematics and Computer Science, 26(1), 15–30, 2016.
  • [30] L. Sajewski, “Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders”, International Journal of Applied Mathematics and Computer Science, 27(1), 33–41, 2017.
  • [31] N. Al Salti, E. Karimov, and S. Kerbal, “Boundary-value problems for fractional heat equation involving caputo-fabrizio derivative”, New Trends in Mathematical Sciences, 4(4), 79–89, 2016.
  • [32] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski, “Diffusion process modeling by using fractional-order models”, Applied Mathematics and Computation, 257(1), 2–11, 2015.
  • [33] Q. Yang, F. Liu, and I. Turner, “Numerical methods for fractional partial differential equations with Riesz space fractional derivatives”, Applied Mathematical Modelling, 34(1), 200–218, 2010.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb83d007-995a-4138-b6f6-c6cbf512d835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.