PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive assessment of the biological attributes of and analytical quantification methods for monosodium glutamate

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review focuses on monosodium glutamate which proclaims the fifth taste as “Umami”. Monosodium glutamate imparts a deep, meaty, umami flavour to foods. Asian cuisine frequently uses this flavouring, just as in the processed items produced across the United States and Europe. This article dealt with a detailed discussion of physicochemical features, pharmacological actions, and different reported analytical methodologies for the estimation of monosodium glutamate. Monosodium glutamate is analyzed using a variety of techniques, including spectroscopy, chromatography, electrochemistry, electrophoresis, chemometrics, flow injection analysis, and biosensors. According to results of comparative research of analytical methodologies, high performance liquid chromatography (HPLC) is most widely used method for analyzing monosodium glutamate which surpasses the gas chromatographic (GC) approach. All of the reported methods are accurate, precise, cost-effective, and sensitive. The European Union defined monosodium glutamate as a food additive that is permitted in some foods, but is subject to quantitative limits. Consequently, this study provides the analyst with an accessible path to quantifying monosodium glutamate’s content for use in the food and pharmaceutical industries.
Rocznik
Strony
287--306
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
  • Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu (Dt), Tamil Nadu, India
  • Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu (Dt), Tamil Nadu, India
Bibliografia
  • 1. Simsek, S.; Aynaci, E.; Arslan, F. An amperometric biosensor for Lglutamate determination prepared from L-glutamate oxidase immobilized in polypyrrole-polyvinylsulphonate film. Artif Cells. Nanomedicine Biotechnol. 2016, 44, 356–61. https://doi.org/10.3109/21691401.2014.951723.
  • 2. Wijayasekara, K.; Wansapala, J. Uses, effects and properties of monosodium glutamate (MSG) on food & nutrition. Int. J. Food Sci. Nutr. 2017, 2, 132–43.
  • 3. Stalikas, C. D.; Karayannis, M. I.; Tzouwara-Karayanni, S. Immobilization of glutamate dehydrogenase on glass derivatives. A method for the assay of glutamates in real samples with simplex optimized automated FIA-system. Talanta 1994, 4, 1561–7. https://doi.org/10.1016/0039-9140(94)E0073-Z.
  • 4. Ault, A. The monosodium glutamate story: the commercial production of MSG and other amino acids. J. Chem. Educ. 2004, 81, 347–55. https://doi.org/10.1021/ed081p347.
  • 5. Bera, T. K.; Kar, S. K.; Yadav, P. K.; Mukherjee, P.; Yadav, S. Effects of monosodium glutamate on human health : a systematic review. World J. Pharm. Sci. 2017, 5, 139–44.
  • 6. Bellisle, F. Glutamate and the UMAMI taste: sensory, Metabolic, Nutritional and Behavioural considerations. A review of the literature published in the last 10 years. Neurosci. Biobehav. Rev. 1999, 23, 423–38. https://doi.org/10.1016/s0149-7634(98)00043-8.
  • 7. Hajihasani, M. M.; Soheili. V.; Zirak, M. R.; Sahebkar, A.; Shakeri, A. Natural products as safeguards against monosodium glutamate- induced toxicity. Iran. J. Basic Med. Sci. 2019, 1908, 416–30. https://doi.org/10.22038/IJBMS.2020.43060.10123.
  • 8. Loliger, J. The use and utility of glutamates as flavoring agents in food. J. Nutr. 2000, 130, 921–6.
  • 9. Lee, K.; Chun, S.; Kim, H. Bioavailability and functions of L-glutamic acid. J. Korean Soc. Food Sci. Nutr. 2017, 50, 93–104.
  • 10. Ahanger, I. A.; Bashir, S.; Parray, Z. A.; Alajmi, M. F.; Hussain, A.; Ahmad, A.; Hasaan, Md. I.; Islam, A.; Sharma , A. Rationalizing the role of monosodium glutamate in the protein aggregation through biophysical approaches: potential impact on neurodegeneration. Front. Neurosci. 2021, 15, 1–17. https://doi.org/10.3389/fnins.2021.636454.
  • 11. Schaumburg, H. H.; Byck, R.; Gerstl, R.; Mashman, J. H. Monosodium L-glutamate: its pharmacology and role in the Chinese restaurant syndrome. Science 1968, 163, 826–8. https://doi.org/10.1126/science.163.3869.826.
  • 12. Nikolelis, D. P. Kinetic - potentiometric determination of monosodium glutamate in soups and soup bases and of glutamic dehydrogenase. Analyst 1987, 112, 763–5. https://doi.org/10.1039/an9871200763.
  • 13. Thithu, H. V.; Wakita, A.; Shikanai, S.; Iwamoto, T.; Wakikawa, N.; Yamamoto, S. Epidemiological studies of monosodium glutamate and health. J. Nutr. Food Sci. 2013, 1, 1–4. https://doi.org/10.4172/2155-9600.S10-009.
  • 14. Hussain, S. Z.; Maqbool, K.; Naseer, B. High performance thin layer chromatography: principle, working and applications. Int. J. Pharm. Pharm. Sci. 2019, 4, 83–8.
  • 15. Md Muslim, N. Z.; Ahmad, M.; Heng, L. Y.; Saad, B. Sensors and Actuators B: chemical Optical biosensor test strip for the screening and direct determination of l -glutamate in food samples. Sens. Actuators B Chem., 2012, 161, 493–7. https://doi.org/10.1016/j.snb.2011.10.066.
  • 16. Arruda, N. J. M.; Filho, J. L. L.; Montenegro, M. C. B. S. M.; Araujo, A. N.; Silva, V. L. Simple and inexpensive flow L –glutamate determination using. J. Agric. Food Chem. 2003, 51, 6945–8. https://doi.org/10.1021/jf0344791.
  • 17. Alnokkari, A.; Ataie, M.; Alasaf, Z. Colorimetric determination of monosodium glutamate in food samples using L -glutamate oxidase. Chin. J. Appl. Environ. Biol. 2013, 19, 1069–72. https://doi.org/10.3724/SP.J.1145.2013.01069.
  • 18. Marlina, D.; Amaran, A.; Ulianas, A. Monosodium glutamate analysis in meatballs soup. Mater. Sci. Eng. C. 2018, 335, 012033. https://doi.org/10.1088/1757-899X/335/1/012033.
  • 19. Theophanides T. Introduction, to infrared spectroscopy. Infrared Spectrosc. - Mater. Sci. Eng. Technol. 2012, 1–11. https://doi.org/10.5772/49106.
  • 20. Qiu, Z.; Mao, J.; Shao, Y.; Li, X.; He, Y. Identification of monosodium glutamate by visible and near infrared reflectance spectroscopy. IEEE, 2006 8th Int. Conf. Signal Processing.2006, 1–4. https://doi.org/10.5772/49106.
  • 21. Christopoulos, T. K.; Diamandis. E. P. Fluorescence Immunoassays. Academic Press, Inc. 1996, 309–35. https://doi.org/10.1016/b978-012214730-2/50015-7.
  • 22. Chapman, J.; Zhou, M. Microplate-based fluorometric methods for the enzymatic determination of l -glutamate: application in measuring L-glutamate in food samples. Anal. Chim. Acta 1999, 402, 47–52. https://doi.org/10.1016/S0003-2670(99)00533-4.
  • 23. Coskun, O. Separation techniques: chromatography. North Clin. Istanbul. 2016, 3, 156–60. https://doi.org/10.14744/nci.2016.32757.
  • 24. Lau, Oi-W.; Mok, C.-S. Indirect conductometric detection of amino acids after liquid chromatographic separation Part II. Determination of monosodium glutamate in foods. Anal. Chim. Acta 1995, 2670, 45–52. https://doi.org/10.1016/0003-2670(94)00423-J.
  • 25. Kaneko, S.; Kumazawa, K.; Nishimura, O. Isolation and identification of the umami enhancing compounds in Japanese soy sauce. Biosci. Biotechnol. Biochem. 2011, 75, 1275–82. https://doi.org/10.1271/bbb.110041.
  • 26. Sporns, P. Flavors and nonalcoholic beverages. Rapid high performance liquid chromatographic determination of monosodium glutamate in food. J. Assoc. Off. Anal. Chem. 1982, 65, 567–71. https://doi.org/10.1093/jaoac/65.3.567.
  • 27. Demirhan, B. E.; Demirhan, B.; Sonmez, C.; Torul, H.; Tamer, U.; Yentur, G. Food Additives and Contaminants:Part B. Surveillance Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography. Food Addit. Contam.: B Surveill. 2015, 8, 63–6. https://doi.org/10.1080/19393210.2014.991355.
  • 28. Khairunnisak, M.; Azizah, A. H.; Jinap. S.; Izzah, A. N. Food Additives & Contaminants: Part A Monitoring of free glutamic acid in Malaysian processed foods, dishes and condiments. Food Addit. Contam.: A. Surveill. 2009, 26, 419–26. https://doi.org/10.1080/02652030802596860.
  • 29. Beljaars, P. R.; Dijk, R. V.; Bisschop, E.; Spiegelenberg, W. M. Liquid chromatographic determination of free glutamic acid in soup, meat product, and Chinese food: interlaboratory study. J. AOAC Int. 1996, 79, 697–702. https://doi.org/10.1093/jaoac/79.3.697.
  • 30. Wang, S.; Tonnis, B. D.; Wang, M. L.; Zhang, S.; Adhikari, K. Investigation of monosodium glutamate alternatives for content of umami substances and their enhancement effects in chicken soup compared to monosodium glutamate. J.Food Sci. 2019, 84, 3275–83. https://doi.org/10.1111/1750-3841.14834.
  • 31. Soyseven, M.; Aboul-Enein, H.;Arli, G. Development of a HPLC method combined with Ultraviolet/Diode Array Detection for determination of Monosodium Glutamate in various food samples. Int. J. Food Sci. 2020, 56, 461–7. https://doi.org/10.1111/ijfs.14661.
  • 32. Croitorua, M. D.; Fulop, I.; Ajtay, M.; Dudutz, G.; Craciun. O.; Dogaruc. M. T. Glutamate determination in foodstuffs with a very simple hplc-uv method. Acta Aliment. 2010, 39, 239–47. https://doi.org/10.1556/AAlim.39.2010.2.15.
  • 33. Bullock, S. Effective Determination of Glutamic Acid by HPLC with ELSD. Application Note SI-01214, 2008.
  • 34. Mosaad, R. M.; Sabry, H. A.; Toxicity of Monosodium Glutamate on Articular Cartilage in Young male and female albino rats : oxidative stress, Pro-inflammatory cytokines and free amino acids. Int. J. Med. Pharm. 2017, 4, 33–40. https://doi.org/10.5281/zenodo.293708.
  • 35. Abdel Moneim, W. M.; Yassa, H. A.; Makboul. R. A.; Mohamed, N. A. Monosodium glutamate affects cognitive functions in male albino rats. Egypt. J. Forensic Sci. 2018, 8, 1–9. https://doi.org/10.1186/s41935-018-0038-x.
  • 36. Mustafa, S.; Dr. Saleem, Y.; Hameed, S. Determination of monosodium glutamate content in selected traditional meat dishes. Int. J. Sci. Eng. 2015, 6, 569–72.
  • 37. Lateef, M.; Siddiqui, K.; Saleem, M.; Iqbal, L. Estimation of monosodium glutamate by modified HPLC method in various Pakistani spices formula. J. Chem. Soc. Pak. 2012, 34, 11–4.
  • 38. Populin, T.; Moret, S.; Truant, S.; Conte, L. S. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate. Food Chem. 2007, 104, 1712–7. https://doi.org/10.1016/j.foodchem.2007.03.034.
  • 39. Williams, A. T. R.; Winfield, S. A. Monosodium glutamate in food using high-performance liquid chromatography and fluorescence detection. Analyst 1982, 107, 1092–4. https://doi.org/10.1039/an9820701092.
  • 40. Gheller, A. C. G. V.; Kerkhoff, J.; Vieira Junior, G. M.; Campos, K. E. de.; Sugui, M. M. Antimutagenic effect of Hibiscus sabdariffa L. Aqueous extract on rats treated with monosodium glutamate. Sci. World J. 2017. https://doi.org/10.1155/2017/9392532.
  • 41. Bogdanov, M. B.; Tjurmina, O. A.; Wurtman, R. J. Consumption of a high dietary dose of monosodium glutamate fails to affect extracellular glutamate levels in the hypothalamic arcuate nucleus of adult rats. Brain Res. 1996, 736, 76–81. https://doi.org/10.1016/0006-8993(96)00679-8.
  • 42. Krishna Veni, N.; Karthika, D.; Surya Devi , M.; Rubini, M. F.; Vishalini, M.; Pradeepa Y. J. Analysis of monosodium l-glutamate in food products by high- performance thin layer chromatography. J. Young Pharm. 2010, 2, 297–300. https://doi.org/10.4103/0975-1483.66795.
  • 43. Ambusaidi, M. M. S. K.; Pandian, S. B. S.; Swaminathan, S.; Sudhakar, M. S. A survey on the monosodium glutamate occurrence in food products and it’s analysis by thin layer chromatography and liquid chromatography-mass spectrometry from sultanate of Oman. Int. J. Analyt. Bioanalyt. Methods 2020, 2, 1–11. https://doi.org/10.35840/ijabm/2411.
  • 44. Kaur, G.; Sharma, S. Gas chromatography – a brief review. Int. J. Inf. Comput. Sci. 2018, 5, 125–31.
  • 45. Nakanishi, H. Improved cleanup and derivatization for gas chromatographic determination of monosodium glutamate in foods. J. Assoc. Off. Anal. Chem. 1983, 66, 1528–31. https://doi.org/10.1093/jaiac/66.6.1528.
  • 46. Henry, B. S. C.; Iyengar, J. R.; Miles, W. F.; Botting, H. G. Gas-liquid chromatographic determination of monosodium glutamate in soups and soup bases. J. Assoc. Off. Anal. Chem. 1979, 62, 604–9. https://doi.org/10.1093/jaoac/62.3.604.
  • 47. Gupta, M.; Kapoor, B.; Gupta, R. Paper chromatography : a review. J. Emerg. Technol. Innov. Res. 2018, 5, 462–8.
  • 48. Bailey, B. W.; Swift, H. L. Flavors and nonalcoholic beverages. Note on a rapid paper chromatographic method for the estimation of added monosodium glutamate in food. J. Assoc. Off Anal. Chem. 1970, 53, 1268–9. https://doi.org/10.1093/jaoac/53.6.1268.
  • 49. Patel, N. K.; Patel, J. K.; Patel M. P.; Rajput, G. C.; Patel, H. A. Introduction to hyphenated techniques and their applications in pharmacy. Pharm. Methods 2010, 1, 1–2. https://doi.org/10.4103/2229-4708.72222.
  • 50. Chawla, G.; Ranjan, C. Principle, instrumentation, and applications of UPLC: a novel technique of liquid chromatography. Open Chem. J. 2016, 3, 1–16. https://doi.org/10.2174/1874842201603010001.
  • 51. De Bie, T. H.; Witkamp, R. F.; Jongsma, M. A.; Balvers, M. G. J. Development and validation of a UPLC-MS/MS method for the simultaneous determination of gamma-aminobutyric acid and glutamic acid in human plasma. J. Chromatogr. B. 2021, 1164, 122519. https://doi.org/10.1016/j.jchromb.2020.122519.
  • 52. Cebi, N.; Dogan, C. ., E.; Olgun, E. O.; Sagdic, O. A survey of free glutamic acid in foods using a robust LC-MS/MS method. Food Chem. 2017, 248, 8–13. https://doi.org/10.1016/j.foodchem.2017.12.033.
  • 53. Yao, T.; Suzuki, S.; Nakahara, T.; Nishino, H. Highly sensitive detection of L-glutamate by on-line amperometric micro-flow analysis based on enzymatic substrate recycling. Talanta 1998, 45, 917–23. https://doi.org/10.1016/S0039-9140(97)00193-8.
  • 54. Kiba, N.; Miwa, T.; Tachibana, M.; Tani, K.; Koizumi, H. Chemiluminometric sensor for simultaneous determination of L-glutamate and L-lysine with immobilized oxidases in a flow injection system. Anal. Chem. 2002, 74, 1269–74. https://doi.org/10.1021/ac011013d.
  • 55. Puchades, R.; Lemieux, L.; Simard, R. E. Sensitive, rapid and precise determination of L‐glutamic acid in cheese using a flow-injection system with immobilized enzyme column. J. Food Sci. 1989, 54, 423–6. https://doi.org/10.1111/j.1365-2621.1989.tb03098.x.
  • 56. Kiba, N.; Moriya, T.; Furusawa, M. Flow-injection determination of l-glutamate in serum with an immobilized glutamate dehydrogenase reactor. Anal. Chim. Acta 1992, 256, 221–4. https://doi.org/10.1016/0003-2670(92)85346-8.
  • 57. Mizutani, F.; Sato, Y.; Hirata Y., Yabuki S. High-throughput flowinjection analysis of glucose and glutamate in food and biological samples by using enzyme/polyion complex-bilayer membranebased electrodes as the detectors. Biosens. Bioelectron. 1998 13, 809–15. https://doi.org/10.1016/S0956-5663(98)00046-3.
  • 58. Mayer, C.; Frauer, A.; Schalkhammer, T.; Pittner, F. Enzyme-based flow injection analysis system for glutamine and glutamate in mammalian cell culture media. Anal. Biochem. 1999, 268, 110–6. https://doi.org/10.1006/abio.1998.3044.
  • 59. Khampha, W.; Yakovleva, J.; Isarangkul, D.; Wiyakrutta, S. Specific detection of l -glutamate in food using flow-injection analysis and enzymatic recycling of substrate. Anal. Chim. Acta 2004, 518, 127–35. https://doi.org/10.1016/j.aca.2004.05.048.
  • 60. Clark, R. A.; Hietpas, P. B.; Ewing, A. G. Electrochemical analysis in picoliter microvials. Anal. Chem. 1997, 69, 259–63. https://doi.org/10.1021/ac960559a.
  • 61. Zdrachek, E.; Bakker, E. Potentiometric sensing. Anal. Chem. 2019, 91, 2–26. https://doi.org/10.1021/acs.analchem.8b04681.
  • 62. Rhodes, J.; Titherley, A. C.; Norman, J. A.; Wood, R.; Lord, D. W. A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Addit. Contam. A. 1991, 8, 265–74. https://doi.org/10.1080/02652039109373976.
  • 63. Yılmaz, D.; Karakus, E. Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples. Artificial cells, blood substitutes, and biotechnology. J. Appl. Sci. Environ. 2011, 1199. https://doi.org/10.3109/10731199.2011.611473.
  • 64. Alonge, P. O.; Idemudia, O. S.; Odokuma-Alonge, O. Direct assay of monosodium glutamatein multi-sourced Bouillon cubes by first derivative potentiometric titration. J. Appl. Sci. Environ. Manage. 2019, 23, 299–304. https://dx.doi.org/10.4314/jasem.v23i2.15.
  • 65. Anirudhan, T. S.; Alexander, S. Selective determination of monosodium glutamate (Ajinomoto) in food samples using a potentiometric method with a modified multiwalled carbon nanotube based molecularly imprinted polymer. RSC Adv. 2015, 5, 96840–50. https://doi.org/10.1039/C5RA17885A.
  • 66. Amine, A.; Mohammadi, H. Amperometry. Encycl. Anal. Sci. 2019, 85–98. https://doi.org/10.1016/B978-0-12-409547-2.14204-0.
  • 67. Yao, T.; Yano, T.; Nanjyo, Y.; Nishino, H. Simultaneous determination of glucose and L-lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis sampling. Anal. Sci. 2003, 19, 61–5. https://doi.org/10.2116/analsci.19.61.
  • 68. Joshi, P. S.; Sutrave, D. S. A brief study of cyclic voltammetry and electrochemical analysis. Int. J. Chem. Tech. Res. 2018, 11, 77–88. https://doi.org/10.20902/ijctr.2018.110911.
  • 69. Baciu, D. D.; Matei, A.; Visan, T. Extraction procedure and cyclic voltammetry assay for detection of monosodium glutamate from different processed food sources. Rev. de Chim. 2020, 71, 63–71. https://doi.org/10.37358/RC.20.8.8278.
  • 70. Ferreira, S. L. C. Chemometrics and Statistics, Experimental Design. 3rd ed. Elsevier Inc. J Anal Sci Technol., 2019, 420–4. https://doi.org/10.1016/B978-0-12-409547-2.14536-6.
  • 71. Acebal, C. C.; Lista, A. G.; Fernandez band, B. S. Simultaneous determination of flavor enhancers in stock cube samples by using spectrophotometric data and multivariate calibration. Food Chem. 2008, 106, 811–5. https://doi.org/10.1016/j.foodchem.2007.06.009.
  • 72. Fernandez-flores, E.; Johnson, A. R.; Blomquist, V. H. Estimation of monosodium glutamate in food products. J. AOAC Int. 1969, 52, 744–6. https://doi.org/10.1093/jaoac/52.4.744.
  • 73. Fernandez-flores, E.; Johnson, A. R.; Blomquist, I. Flavors and non alcoholic beverages. Collaborative study of a method for determination of monosodium glutamate in food products. J. AOAC Int. 1969, 52, 1131–2. https://doi.org/10.1093/jaoac/52.6.1131.
  • 74. Gummadi, S.; Kandula, V. N. A review on electrophoresis, capillary electrophoresis and hyphenations. Int. J. Pharm. Sci. Res. 2020, 11, 6038. https://doi.org/10.13040/IJPSR.0975-8232.11(12).6038-56.
  • 75. Perez-Ruiz, T.; Martinez-Lozano, C.; Sanz A.; Bravo, E. Analysis of glutamate in beverages and foodstuffs by capillary electrophoresis with laser-induced fluorescence detection.Chromatographia 2000, 52, 599–602. https://doi.org/10.1007/bf02789758.
  • 76. Kaul, S.; Faiman, M. D.; Lunte, C. E. Determination of GABA, glutamate and carbamathione in brain microdialysis samples by capillary electrophoresis with fluorescence detection. Electrophoresis 2011, 32, 284–91. https://doi.org/10.1002/elps.201000463.
  • 77. Aung, H. P.; Pyell, U. In-capillary derivatization with o –phthalaldehyde in the presence of 3-mercaptopropionic acid for the simultaneous determination of monosodium glutamate, benzoic acid, and sorbic acid in food samples via capillary electrophoresis with ultraviolet detection. J. Chromatogr. A. 2016, 1449, 156–65. https://doi.org/10.1016/j.chroma.2016.04.033.
  • 78. Basu, A. K.; Chattopadhyay, P.; Roychudhuri, U.; Chakraborty, R. A biosensor based on co-immobilized l -glutamate oxidase and l -glutamate dehydrogenase for analysis of monosodium glutamate in food. Biosens. Bioelectron. 2006, 21, 1968–72. https://doi.org/10.1016/j.bios.2005.09.011.
  • 79. Basu, A. K.; Chattopadhyay, P.; Roychudhuri, U.; Chakraborty, R. Development of biosensor based on immobilized L-glutamate oxidase for determination of monosodium glutamate in food. Indian J. Exp. Biol. 2006, 44, 392–8.
  • 80. Mulyasuryani, A.; Dwi Prasetya, D. E. Development of chemical sensor for detection of monosodium glutamate by polyvinyl alcohol- Fe3O4 membrane on screen printed carbon electrode. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 3–9. https://doi.org/10.1088/1757-899X/546/3/032022.
  • 81. Joseph, O. A.; Dineesha, N.; Kaumal, M. Development and validation of a portable paper-based low-cost electrochemical sensor for the detection of monosodium L-glutamate in food. Sri Lankan J. Technol. 2021, 35–40.
  • 82. Acebal, C. C.; Insausti, M.; Pistonesi, F.; Lista, A. G.; FernandezBand, B. S. A new automated approach to determine monosodium glutamate in dehydrated broths by using the flowbatch methodology. Talanta 2010, 81, 116–9. https://doi.org/10.1016/j.talanta.2009.11.045.
  • 83. Sadeghian, Y.; Üzümcü, _I.; Erbas¸, O. Cancer cells and alpha-ketoglutarate. DJ Tx Sci. 2021, 6, 86–91. http://dx.doi.org/10.5606/dsufnjt.2021.029.
  • 84. Silva, B. M.; Casal, S.; Andrade, P. B.; Seabra, R. M.; Oliveira, M. B.; Ferreira, M. A. Development and evaluation of a GC/FID method for the analysis of free amino acids in quince fruit and jam. Anal. Sci. 2003, 19(9), 1285–90. https://doi.org/10.2116/analsci.19.1285
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a96beae0-2c35-44cc-805e-e132cb44d7bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.