Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fresh water is essential for life. More and more countries around the world are facing scarcity of drinking water, which affects over 50% of the global population. Due to human activity such as industrial development and the increasing greenhouse effect, the amount of drinking water is drastically decreasing. To address this issue, various methods of sea and brackish water desalination are used. In this study, an energy analysis (specific energy consumption, SEC) of two laboratory membrane processes, reverse osmosis (RO) and pervaporation (PV), was conducted. A model feed system saline water at 0.8, and 3.5% wt. NaCl was used. The efficiency and selectivity of membranes used in PV and RO were examined, and power of the devices was measured. The desalination processes were found to have a high retention factor (over 99%) for both PV and RO. For PV, the permeate fluxes were small but they increased with increasing feed flow rate, process temperature and salt content in the feed. The calculated SEC values for both laboratory processes ranged from 2 to 70 MWh/m 3. Lowering the process temperature, which consumes 30 to 60% of the total energy used in the PV process, can be an important factor in reducing energy consumption
Rocznik
Tom
Strony
art. no. e48
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
Bibliografia
- 1. Ali A., Tufa R.A., Macedonio F., Curcio E., Drioli E., 2018. Membrane technology in renewable-energy-driven desalination. Renewable Sustainable Energy Rev., 81, 1–21. DOI: 10.1016/j.rser.2017.07.047.
- 2. Al-Karaghouli A., Kazmerski L.L., 2013. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable Sustainable Energy Rev., 24, 343–356. DOI: 10.1016/j.rser.2012.12.064.
- 3. Aristotle, translated by Lee H.D.P., 1952. Meteorologica. Harvard University Press, Cambridge.
- 4. Balima L.H., Nacoulma B.M.I, Da S.S., Ouédraogo A., Soro D., Thiombiano A., 2022. Impacts of climate change on the geographic distribution of African oak tree (Afzealia africanaSm.) in Burkina Faso, West Africa. Heliyon, 8, e08688. DOI: 10.1016/j.heliyon.2021.e08688.
- 5. Basile A., Figoli A., Khayet M., 2015. Pervaporation, vapour permeation and membrane distillation. Principles and applications. 1st edition, Woodhead Publishing.
- 6. Bobik M., Labus K., 2014. Mine water desalination in the industrial practice – state of the art and new challenges (in Polish). Przegląd Górniczy, 4, 99–105.
- 7. Borek P., 2018. Water as the cause of armed conflicts in the 21st century (in Polish). Social Dissertations, 12(2), 32–37. DOI: 10.29316/rs.2018.11.
- 8. Buthelezi K., Bulthelezi-Dube N., 2021. Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil. Heliyon, 8, e08690. DOI: 10.1016/j.heliyon.2021.e08690.
- 9. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, 1998. Official J., L 330, 05.12.1998, 32–54.
- 10. Fornarelli R., Shahnia F., Anda M., Bahri P.A., Ho G, 2018. Selecting an economically suitable and sustainable solution for renewable energy-powered water desalination system: a real Australian case study. Desalination, 435, 128–139. DOI: 10.1016/j.desal.2017.11.008.
- 11. García-Rodríguez L., 2003. Renewable energy applications in desalination: state of the art. Sol. Energy, 75, 381–393. DOI: 10.1016/j.solener.2003.08.005.
- 12. Goosen M., Mahmoudi H., Ghaffour N., 2010. Water desalination using geothermal energy. Energies, 3, 1423–1442. DOI: 10.3390/en3081423.
- 13. Jantaporn W., Ali A., Aimar P., 2017. Specific energy requirement of direct contact membrane distillation. Chem. Eng. Res. Des., 128, 15–26. DOI: 10.1016/j.cherd.2017.09.031.
- 14. Kaminski W., Marszalek J., Tomczak E., 2018. Water desalination by pervaporation –Comparison of energy consumption. Desalination, 433, 89–93. DOI: 10.1016/j.desal.2018.01.014.
- 15. Karabelas A.J., Koutsou C.P., Kostoglou M., Sioutopoulos D.C., 2018. Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination, 431, 15–21. DOI: 10.1016/j.desal.2017.04.006.
- 16. Karagiannis I.C., Soldatos P.G., 2008. Water desalination cost literature: review and assessment. Desalination, 223, 448–456. DOI: 10.1016/j.desal.2007.02.071.
- 17. Kojzar K., 2023. Raport UE o zatruciu Odry: największym winnym katastrofy jest człowiek. OKO.press. Available at: https://oko.press/odra-raport-ue.
- 18. Lachowska P., 2022. Analysis of the process capabilities of commercial membranes in the pervaporation desalination process (in Polish). MSc Thesis, Lodz University of Technology.
- 19. Li Q., Cao B., Li P., 2018. Fabrication of high performance pervaporation desalination composite membranes by optimizing the support layer structures. Ind. Eng. Chem. Res., 57, 11178–11185. DOI: 10.1007/s11705-021-2078-2.
- 20. Li Y., Chen X., Xu Y., Zhuo Y., Lu G., 2021. Sustainable thermal-based desalination with low-cost energy resources and low-carbon footprints. Desalination, 520, 115371. DOI: 10.1016/j.desal.2021.115371.
- 21. Li Y., Thomas E.R., Hernandez Molina M., Mann S., Walker W.S., Lind M.L., Perreault F., 2023. Desalination by membrane pervaporation: A review. Desalination, 547, 116223. DOI: 10.1016/j.desal.2022.116223.
- 22. Łuczak I., 2017. Analysis of the water desalination process from a model system by means of pervaporation (in Polish). MSc Thesis, Lodz University of Technology.
- 23. Nassrullah H., Anis S.F., Hashaikeh R., Hilal N., 2020. Energy for desalination: A state-of-the art review. Desalination, 491, 114569. DOI: 10.1016/j.desal.2020.114569.
- 24. Prajapati M., Shah M., Soni B., 2021. A review of geothermal integrated desalination: A sustainable solution to overcome potential freshwater shortages. J. Cleaner Prod., 326, 129412. DOI: 10.1016/j.jclepro.2021.129412.
- 25. Reddy K.V., Ghaffour N., 2007. Overview of the cost of de- salinated water and costing methodologies. Desalination, 205, 340–353. DOI: 10.1016/j.desal.2006.03.558.
- 26. Regulation of the Minister of Health in Poland of 13 November 2015 on the quality of water intended for human consumption.
- 27. Dz.U. 2015 poz. 1989. Available at: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001989.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-762e46d2-b7e2-443c-a6b0-d8f5a5cdbe5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.