Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multistorey steel buildings are proved to be very susceptible to situations when one of their columns loses its capacity as a result of an accidental action. The above mentioned case concerning a steel framed building is the subject of investigation presented in the paper. Structural system of analyzed building was designed in accordance with ultimate and serviceability limit states in the persistent and transient design situations. Then its integrity in accidental design situation was assessed. According to EN 1991-1-7 [1], the strategy based on limiting the extent of localized failure was assumed. Firstly, the static analysis of the structure in Autodesk Robot Structural Analysis Professional software was performed. Then, the static and dynamic GMNA analyzes (materially and geometrically nonlinear) of the structure in Autodesk Simulation Mechanical were carried out. Calculations were made in reference to plane frame, which is the repeatable load bearing system of considered building. FEM models were made with the use of beam and shell elements. The results of performed analyzes were compared and discussed. Concluding remarks were drawn and directions of future research were outlined.
Słowa kluczowe
Rocznik
Tom
Strony
5--20
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Rzeszow University of Technology, ul. Poznańska 2, 35-084 Rzeszów, Tel.: +48 17 865 1616
autor
- Warsaw University of Technology, al. Armii Ludowej 16, 00-637 Warszawa, Tel.: +48 22 425 2271
Bibliografia
- [1] EN 1990:2004. Eurocode. Basis of structural design.
- [2] EN 1991-1-7: 2008 Eurocode 1. Actions on Structures: Part 1-7 Accidental Actions.
- [3] Giżejowski M., Kwaśniewski L., Wierzbicki S., Juszczyk W., Szczerba R.: Modelowanie odporności stalowej konstrukcji szkieletowej na zagrożenie wybuchem zewnętrznym i katastrofą postępującą. Inżynieria i Budownictwo, nr 1/2016 (in Polish).
- [4] Giżejowski M., Kwaśniewski L., Wierzbicki S., Juszczyk W., Szczerba R.: Modelowanie zjawiska wybuchu w aspekcie oddziaływań wyjątkowych na budynek. Inżynieria i Budownictwo, nr 8/2015 (in Polish).
- [5] Giżejowski M., Kwaśniewski L., Wierzbicki S., Juszczyk W.: Bezpieczeństwo stalowych konstrukcji szkieletowych w aspekcie normalizacji projektowania w sytuacjach wyjątkowych. Inżynieria i Budownictwo, nr 3/2014 (in Polish).
- [6] COST Action TU0601. Robustness of Structures: Final Report. Czech Technical University in Prague, Czech Republic. Prague 2011.
- [7] Szczerba R.: Odporność ramowych konstrukcji stalowych na zniszczenie postępujące w wyniku oddziaływań wyjątkowych. „Budownictwo i Architektura”, 13(3) 2014 (in Polish).
- [8] Shuang Li, Shengping Liu, Changhai Zhai & Lili Xie. Unified Analysis on Progressive and Seismic Collapses of RC Frame Structure: The Effect of Masonryinfill Walls. 15 WCEE. Lisboa 2012.
- [9] Tavakoli H.R., Kiakojouri F. - Influence of Sudden Column Loss on Dynamic Response of Steel Moment Frames under Blast Loading. International Journal of Engineering. Vol. 26, No. 2, February 2013, 197-205.
- [10] Kwaśniewski L. – Nonlinear dynamic simulations of progressive collapse for a multistory building. Engineering Structures. Vol. 32, Issue 5, May 2010, 1223-1235.
- [11] Milani G., Valente M. Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches. Engineering Failure Analysis, Volume 54, August 2015, 13-56.
- [12] Shi H., Salim H. Geometric nonlinear static and dynamic analysis of guyed towers using fully nonlinear element formulations. Engineering Structures, Volume 99, 15 September 2015, 492-501.
- [13] Bai L., Zhang Y. Nonlinear dynamic behavior of steel framed roof structure with selfcentering members under extreme transient wind load. Engineering Structures, Volume 49, April 2013, 819-830.
- [14] Kokot S., Anthoine A., Negro P., Solomos G. Static and dynamic analysis of a reinforced concrete flat slab frame building for progressive collapse. Engineering Structures, Volume 40, July 2012, 205-217.
- [15] http://www.autodesk.pl/products/simulation/features/robot-structuralanalysis/all/gallery-view.
- [16] http://www.autodesk.com/products/simulation-mechanical/overview.
- [17] Szczerba R., Gajewski M., Giżejowski M.: Analysis of steel I-beam-columns crosssection resistance with use of Finite Element Method, Czasopismo Inżynierii Lądowej, Środowiska i Architektury - Journal of Civil Engineering, Environment and Architecture, JCEEA, XXXII, 62 (3/II/15), s. 425-437, DOI: 10.7862/rb.2015.166.
- [18] Szczerba R., Gajewski M., Giżejowski M.: Numerical study of resistance interaction curves of steel I beam-columns, 61. Konferencja Naukowa KILiW PAN i KN PZITB, 2015 (in Polish).
- [19] E. L. Wilson, I. Farhoomand, K. J. Bathe. Nonlinear dynamic analysis of complex structures. Earthquake Engineering & Structural Dynamics 01/1972. 1(3). 241-252.
- [20] Jemioło S., Gajewski M.: Hiper-elasto-plasticity. Seria wydawnicza Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności, Tom III, OWPW, 2014 (in Polish).
- [21] Galambos TV. Recent research and design developments in steel and composite steel – concrete structures in USA . J Constr Steel Res 2000; 55(1-3), 289-303.
- [22] Wilson, E. L.. Static and Dynamic Analysis of Structures (4th ed.). Berkeley, CA: Computers and Structures, Inc, 2004.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58fb4af3-621a-4e6d-93b5-08fb1fc9ac7a