PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of divergence entropy to characterize the structure of lipid-binding proteins

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lipid-binding protein present in the human brain is the object of this analysis. The expression of these proteins is especially important for nervous cell differentiation and their migration in the process of the development of the brain. The “fuzzy oil drop” model applied to the analysis of these proteins may suggest the mechanism of complex generation. It is shown that this type of complex may appear spontaneously in water environment. The presence of ligand does not imply any form of adaptation of the polypeptide chain to the ligand molecule. It can be speculated that ligand binding is of a static character without the necessity for mutual structural fitting. The structures of polypeptide in the apo- and complexed forms do not differ in respect to hydrophobic core formation. Such an interpretation is different than that observed in other ligand-binding proteins where the binding cavity needs to be specially fitted to the specific ligand. It can also be concluded that the lipid-binding process is of low specificity in this case.
Rocznik
Strony
171--176
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University – Medical College, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Department of Bioinformatics and Telemedicine, Jagiellonian University – Medical College, Krakow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Department of Bioinformatics and Telemedicine, Jagiellonian University – Medical College, 31-530 Krakow, Łazarza 16, Poland
Bibliografia
  • 1. Storch J, McDermott L. Structural and functional analysis of fatty acid-binding proteins. J Lipid Res 2009;50:S126–31.
  • 2. Feng L, Hatten ME, Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 1994;12:895–908.
  • 3. Frauenfelder H. The physics of proteins, tertiary structure of proteins biological and medical physics, biomedical engineering, 1st ed. New York: Springer-Verlag, 2010.
  • 4. Alejster P, Banach M, Jurkowski W, Marchewka D, Roterman I. Comparative analysis of techniques oriented on the recognition of ligand binding area in proteins. In: Roterman-Konieczna, I, editor. Identification of ligand binding site and protein-protein interaction area. Dordrecht: Springer, 2013:55–86.
  • 5. Balendiran GK, Schnutgen F, Scapin G, Borchers T, Xhong N, Lim K, et al. Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. J Biol Chem 2000;275:27045–54.
  • 6. Rademacher M, Zimmerman AW, Rüterjans H, Veerkamp JH, Lücke C. Solution structure of fatty acid-binding protein from human brain. Mol Cell Biochem 2002;239:61–8.
  • 7. Kalinowska B, Banach M, Konieczny L, Roterman I. Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 2015;17: 1477–507.
  • 8. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1976;104: 59–107.
  • 9. Kullbak S, Leibler RA. On information and sufficiency. Ann Math Stat 1951;22:79–86.
  • 10. Banach M, Konieczny L, Roterman I. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J Theor Biol 2014;359:6–17.
  • 11. Kalinowska B, Banach M, Konieczny L, Marchewka D, Roterman I. Intrinsically disordered proteins-relation to general model expressing the active role of the water environment. Adv Protein Chem Struct Biol 2014;94:315–46.
  • 12. Roterman I, Konieczny L, Banach M, Marchewka D, Kalinowska B, Baster Z, et al. Simulation of the protein folding process. In: Adam L, editor. Computational methods to study the structure and dynamics of biomolecules and biomolecular processes. Berlin: Springer-Verlag, 2014:599–638.
  • 13. Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC. Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol 2000;7:312–21.
  • 14. Innis SM, Sprecher H, Hachey D, Edmond D, Anderson RE. Neonatal polyunsaturated fatty acid metabolism. Lipids 1999;34:139–49.
  • 15. Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 2001;40:1–94.
  • 16. Voigt RG, Jensen CL, Fraley JK, Rozelle JC, Brown FR, Heird WC. Relationship between omega3 long-chain polyunsaturated fatty acid status during early infancy and neurodevelopmental status at 1 year of age. J Hum Nutr Diet 2002;15:111–20.
  • 17. Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr 2007;137:855–9.
  • 18. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 2012;3:1–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53e0fcd5-7646-42e7-828e-b10d23925eca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.