PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of slim obstacle geometry on the flow and heat transfer in microchannels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a computational study on hydrodynamic and heat transfer characteristics of the laminar flow inside a rectangular 2D microchannel of height H, which includes a slim micro obstacle of height h and width w placed on the lower wall of the channel. The Reynolds number varies between 20 and 200. Three different values of height h and two different shapes of the slim obstacles: triangular and rectangular one, are considered. Thus, a total of 24 geometrical configurations of fluid flow are analyzed. Fluid flow equations are solved using the commercial CFD package of ADINA R&D, Inc. 9.1. Detailed analysis of the fluid velocity field and streamlines is carried out to investigate the flows in recirculation zone behind the obstacle. Results obtained show that the rectangular obstacle caused larger vortex formation in fluid flow. For flows with larger value of the (h/H) ratio, an increase in the value of loss coefficient factors is observed. Meanwhile, the increased Reynolds number causes the vortex zone behind the rectangular obstacle to be larger than behind the triangular one.
Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Fluid Mechanics and Aerodynamics, Rzeszow University of Technology, 12 Powstańców Warszawy Av., Rzeszów 35-959, Poland
  • Department of Fluid Mechanics and Aerodynamics, Rzeszow University of Technology, 12 Powstańców Warszawy Av., Rzeszów 35-959, Poland
Bibliografia
  • [1] Adina R&D, Inc. Theory and Modeling Guide, Volume III, ADINA CFD&FSI, Report ARD, 2015.
  • [2] S. Baheri Islami, B. Dastvareh, and R. Gharraei, “An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers”, International Journal of Heat and Mass Transfer 78 (2014) 917–929.
  • [3] S. Baheri Islami, B. Dastvareh, and R. Gharraei, “Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer”, International Communications in Heat and Mass Transfer 43, 146–154 (2013).
  • [4] S. Błoński, P. Domagalski, M. Dziubiński, and T.A. Kowalewski, “Hydro-dynamically modified seeding for micro-PIV”, Arch. Mech. 63 (2) 163–182 (2011).
  • [5] L. Chai, G.D. Xia, and H.S. Wang, “Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls”, Applied Thermal Engineering 92, 32‒41, (2016).
  • [6] M. Chen, B.Y. Cao, and Z.Y. Guo, “Micro/nano-scale fluid flow on structured surfaces”, ICNMM 2008‒62023.
  • [7] G. Croce and P.D’Agaro, “Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow”, J. Phys. D: Appl. Phys. 38, 1518–1530 (2005).
  • [8] G. Gamrat, M. Favre-Marinet, and D. Asendrych, “Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels”, International Journal of Heat and Mass Transfer 48, 2943–2954 (2005).
  • [9] S. Gareh, “Numerical heat transfer in rectangular channel with mounted obstacle”, International Letters of Chemistr, Physics and Astronomy 19 (2), 111‒119 (2014).
  • [10] Q. Gravndyan, O.A. Akbari, D. Toghraie, A.Marzban, R. Mashayekhi, R. Karimi, and F. Pourfattah, “The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel”, Journal of Molecular Liquids 236, 254‒265 (2017).
  • [11] H. Herwig, D. Gloss, and T. Wenterodt, “Flow in channels with rough walls-old and new concepts”, ICNMM 2008‒62064.
  • [12] S. Kandikar and S. Gerimella, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier Ltd., 2006.
  • [13] M.H. Khadem, M. Shams, and S. Hossainpour, “Numerical simulation of roughness effects on flow and heat transfer in microchannels”, International Communication in Heat and Mass Transfer 36, 69‒77 (2009).
  • [14] Z. Kheirandish, S.A Gandjalikhan Nassab, and M. Vakilian, “Second law analysis of forced convective cooling in a channel with heated wall mounted obstacle”, Journal of Electronics Cooling and Thermal Control 3, 101‒110 (2013).
  • [15] M. Kmiotek and A. Kucaba-Pietal, “Finite Element Method as a modern tool for engineering calculations, [in:] Issues of Contemporary Computing Science, ed. T. Lewandowski, PWSTE Jaroslaw, 97‒110, 2016.
  • [16] T. Ma, Q. Wang, M. Zeng, Y. Chen, Y. Liu, and V. Nagarajan, “Study on heat transfer and pressure drop performances of ribbed channel in the high temperature heat exchanger”, Applied Energy 99, 393‒401 (2012).
  • [17] H.F. Ozop, Y. Varol, and D.E. Alnak, “Control of heat transfer and fluid flow using a triangular bar in heated bloks located in a channel”, International Communications in Heat and Mass Transfer 36, 878‒885 (2009).
  • [18] A.G. Passos, V.-A. Chatzieleftheriou, and A.A. Mouza, “Casson fluid flow in a michrochanel containing a flow distrub rib”, Chemical Engineering Science 14, 229‒237 (2016).
  • [19] P.J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM, 1998.
  • [20] H.S. Seo and Y.J. Kim, “A study on the mixing characterics in a hybrid type microchannel with various obstacle configurations, Materials Research Bulletin 17, 948‒2951 (2012).
  • [21] S. Shen, J.L. Xu, J.J. Zhou, and Y. Chen, “Flow and heat transfer in microchannels with rough wall surface”, Energy Conversion and Management 47, 1311–1325 (2006).
  • [22] K.I. Sotowa, A. Yamamoto, K. Nakagawa, and S. Sugiyama, “Indentation an baffles for improving mixing ratr in deep microchannel reactors”, Chemical Engineering Journal 167, 490‒495 (2011).
  • [23] M. Steinke, and S. Kandlikar, “Single-phase liquid friction factors in microchannels, International Journal of Thermal Science 45, 920060, 1073‒1083.
  • [24] I.A. Stogiannis, A.D. Passos, A.A. Mouza, S.V. Paras, V. Pěnkavová, and J. Tihon, “Flow investigation in a microchannel with a flow disturbing rib”, Chemical Engineering Science 119 65–76 (2014).
  • [25] Y.T. Yang and C.Z. Hwang, “Calculation of turbulent flow and heat transfer in a porous-baffled channel”, International Journal of Heat and Mass Transfer 46, 771‒780 (2003).
  • [26] C. Zhang and Y. Chen, “Effects of roughness elements on laminar flow and heat transfer in microchannels”, Chemical Engineering and Processing 49, 1188‒1192 (2010).
  • [27] J. Zhao, S.Huang and L. Gong, “Numerical studies on geometric features of microchannel heat sink with pin fin structure”, 4th Micro and Nano Flows Conference, UCL, London (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc7fd37f-b306-49e3-b753-32833e1fd43f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.