Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Obesity in children and adolescents is one of the most serious health challenges of the 21st century, and the number of overweight and obese people is steadily increasing. In recent years, entomophagy, or the consumption of insects, has been proposed as an alternative source of protein with economic and environmental advantages over traditional meat production. Edible insects have high nutritional value. They are rich in protein, recommended fats, vitamins, and minerals. Moreover, numerous animal studies show insect protein can slow weight gain, improve the immune response, reduce inflammation, and benefit energy metabolism. Despite the challenges of promoting and accepting insect protein, its health and environmental benefits may make it an essential part of a balanced diet in the future. Including insects in the diet can help overcome obesity-related health problems, potentially help control weight and reduce the risk of obesity-related diseases. However, further research, including clinical trials, is needed to confirm the health benefits of insect protein. Educational campaigns can help break down cultural barriers and increase the acceptance of entomophagy.
Czasopismo
Rocznik
Tom
Strony
1--11
Opis fizyczny
Bibliogr. 94 poz., tab.
Twórcy
autor
- Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
- [1] Taraszewska A. 2018. Nadwaga i otyłości wśród dzieci i młodzież. Narodowe Centrum Edukacji Żywieniowej. Narodowe Centrum Edukacji Żywieniowej. (https://ncez.pzh.gov.pl/abc-zywienia/nadwaga-i-otylosc-wsrod-dzieci-i-mlodziezy/, access: 10.12.1024).
- [2] Pakhare M., Anjankar A. 2024. Critical Correlation Between Obesity and Cardiovascular Diseases and Recent Advancements in Obesity. Cureus 4(16): 1:e51681. https://www.doi.org/10.7759/cureus.51681
- [3] Tak Y.J., Lee S.Y. 2021. Anti-Obesity Drugs: Long-Term Efficacy and Safety: An Updated Review. World J Mens Health 39(2): 208–221. https://www.doi.org/10.5534/wjmh.200010
- [4] Sanyaolu A., Okorie C., Qi X., Locke J., Rehman S., Patidar R. 2019. Childhood and Adolescent Obesity in the United States: A Public Health Concern. Global Pediatric Health 6: 2333794X19891305. https://www.doi.org/10.1177/2333794X19891305
- [5] Jarosz. M, Rychlik E., Cichocka A. 2019. Białkowska M. Czy wiesz ile potrzebujesz energii z pożywienia? Narodowe Centrum Edukacji Żywieniowej. (https://ncez.pzh.gov.pl/wp-content/uploads/2021/03/broszura-energia-1.pdf, access: 14.11.2024).
- [6] Phillips S.M., Fulgoni V.L. 2022. 3rd: Assessment of the Protein Intake of Americans: NHANES 2003–2014. Nutrients 15, 14(6): 1234. https://www.doi.org/10.3390/nu14061234
- [7] Sørensen A., Mayntz D., Raubenheimer D., Simpson S.J. 2023. Effects of Dietary Protein to Carbohydrate Balance on Energy Intake and Body Adiposity in Mice. Obesity (Silver Spring) 31(1): 45–56.
- [8] Saner C., Tassoni D., Harcourt B.E., Kao K.T., Alexander E.J., McCallum Z., Olds T., Rowlands A.V., Burgner D.P., Simpson S.J., Raubenheimer D., Senior A.M., Juonala M., Sabin M.A. 2020. Evidence for Protein Leverage in Children and Adolescents with Obesity. Obesity 28: 822–829. https://www.doi.org/10.1002/oby.22755
- [9] Larsen T.M., Dalskov S.M., van Baak M., Jebb S.A., Papadaki A., Pfeiffer A.F., Martinez J.A., Handjieva-Darlenska T., Kunesova M., Holst C., Saris W.H., Astrup A. 2023. Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance. New England Journal of Medicine 384(22): 2102–2113.
- [10] Hall K.D. 2019. The potential role of protein leverage in the US obesity epidemic. Obesity (Silver Spring) 27: 1222–1224.
- [11] Barakat G.M., Ramadan W., Assi G., El Khoury N.B. 2024. Satiety: a gut–brain–relationship. The Journal of Physiological Sciences 74: 17, 74(1):11. https://www.doi.org/10.1186/s12576-024-00904-9
- [12] Moon J., Koh G. 2020. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. Journal of Obesity & Metabolic Syndrome 30, 29(3): 166–173. https://www.doi.org/10.7570/jomes20028
- [13] Skotnicka M., Karwowska K., Kłobukowski F., Borkowska A., Pieszko M. 2021. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 10, 766.
- [14] Villaseñor V.M., Enriquez-Vara J.N., Urías-Silva J.E., Mojica L. 2021. Edible Insects: Techno-functional Properties Food and Feed Applications and Biological Potential. Food Reviews International 38(1): 866–892. https://doi.org/10.1080/87559129.2021.1890116
- [15] Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. 2020. Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome.
- [16] Mancini S., Moruzzo R. 2021. Insects as food and feed: A review of potential benefits and risks. Journal of Insects as Food and Feed 7(5): 477–492.
- [17] Di Rosa C., Lattanzi G., Taylor S.F., Manfrini S., Khazrai Y.M. 2020. Very low calorie ketogenic diets in overweight and obesity treatment: Effects on anthropometric parameters, body composition, satiety, lipid profile and microbiota. Obesity Research & Clinical Practice 14: 491–503.
- [18] Loper H., Leine M., Bassoff L., Sample J., Romero-Ortega M., Gustafson K.J., Taylor D.M., Schiefer M.A. 2021.Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Scientific Reports 11: 10394.
- [19] Dobermann D., Swift J.A., Field L.M. 2017. Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin 42: 293–308.
- [20] Martini D., Brusamolino A., Del Bo’ C., Laureati M., Porrini M., Riso P. 2018. Effect of fiber and protein-enriched pasta formulations on satiety-related sensations and afternoon snacking in Italian healthy female subjects. Physiology & Behavior 185: 61–69.
- [21] Skotnicka M., Mazurek A., Karwowska K., Folwarski M. 2022. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control. Nutrients 14, 2147. https://www.doi.org/10.3390/nu14102147
- [22] Zhang Y., Wang D., Zhou S., Duan H., Guo J., Yan W. 2022. Effects of Dietary Protein to Carbohydrate Balance on Energy Intake and Body Adiposity in Mice. Obesity (Silver Spring) 31(1): 45–56.
- [23] Aguilar-Toalá J.E., Cruz-Monterrosa R.G., Liceaga A.M. 2022. Beyond human consumption of edible insects: Health benefits and safety issues. Insects 13(11): 1007. https://www.doi.org/10.3390/insects13111007
- [24] Schlüter O., Rumpold B., Holzhauser T., Roth A., Vogel R.F., Quasigroch W., Vogel S., Heinz V., Jäger H., Bandick N., Kulling S., Knorr D., Steinberg P., Engel K.H. 2017. Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research 61(6): 1600520. https://www.doi.org/10.1002/mnfr.20160052
- [25] Bayham B.E., Greenway F.L., Johnson W.D., Dhurandhar N.V. 2014. A randomized trial to manipulate the quality instead of quantity of dietary proteins to influence the markers of satiety. Journal of Diabetes and its Complications 28: 547–552.
- [26] Zhou Y., Wang D., Zhou S., Duan H., Guo J., Yan W. 2022. Nutritional composition, health benefits and functional value of edible insects: A review. Foods 11(24): 3961. https://www.doi.org/10.3390/foods11243961
- [27] Meyer-Rochow V.B.2017. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. Journal of Ethnobiology and Ethnomedicine 13: 9.
- [28] Gantner M., Piesik D. 2023. Jadalne, pożyteczne i zrównoważone – owady jako alternatywne źródło białka. In: Gutkowska. (ed.), Partnerstwo instytucjonalne w kształtowaniu zachowań żywieniowych w trosce o zdrowie publiczne. Wydawnictwo SGGW, Warszawa: 510–525.[
- 29] Cunha N., Andrade V., Ruivo P., Pinto P. 2023. Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients 15(14): 3076. https://www.doi.org/10.3390/nu15143076.
- [30] Tang C., Yang D., Liao H., Sun H., Liu C., Wei L., Li F. 2019. Edible insects as a food source: a review. Food Production, Processing and Nutrition 1: 8.
- [31] Li M., Mao C., Li X., Jiang L., Zhang W., Li M., Liu H., Fang Y., Liu S., Yang G., Hou X. 2023. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 12(22): 4073.
- [32] Ordoñez-Araque R., Quishpillo-Miranda N., Ramos-Guerrero L. 2022. Edible Insects for Humans and Animals: Nutritional Composition and an Option for Mitigating Environmental Damage. Insects 13: 944. https://www.doi.org/10.3390/insects13100944
- [33] Kurečka M., Kulma M., Petříčková D., Plachý V., Kouřimská L. 2021. Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. European Food Research and Technology 247: 2527–2532.
- [34] Mohamed E.H.A. 2020. Determination of Nutritive Value of the Edible migratory locust Locusta migratoria. International Journal of Advances in Pharmacy, Biology and Chemistry, 9(2): 1–6.
- [35] Paiko Y.B., Azeh Y., Ibrahim I.L., Awwal I. 2018. Nutritional composition of Edible Termites (Macrotermes bellicosus) Consumed in Paikoro Local Government, Niger State, Nigeria. Lapai Journal of Applied and Natural Sciences, 3(1): 214–221.
- [36] Udomsil N., Imsoonthornruksa S., Gosalawit C., Ketudat-Cairns M. 2019. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Science and Technology Research 25(4): 597–605
- [37] Conceição da-Silva W., Silva É.B.R. da, Silva J.A.R. da et al. 2024. Nutritional Value of the Larvae of the Black Soldier Fly (Hermetia illucens) and the House Fly (Musca domestica) as a Food Alternative for Farm Animals – A Systematic Review. Insects 15(8): 619
- [38] Cho E.C., Ahn S., Hwang H.J., Shin K.O., Kim S., Choi Y.J. 2024. Investigating the Nutritional and Functional Properties of Protaetia brevitarsis Larvae and Isolated Soy Protein Mixtures as Alternative Protein Sources. Foods 13(10): 1540.
- [39] Ajomiwe N., Boland M., Phongthai S., Bagiyal M., Singh J., Kaur L. 2024. Protein Nutrition: Understanding Structure, Digestibility, and Bioavailability for Optimal Health. Foods 13(11): 1771.
- [40] Rumpold B.A., Schlüter O.K. 2019.Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research 63(1): 1800111.
- [41] Malla N., Nørgaard J.V., Roos N. 2023. Protein quality of edible insects in the view of current assessment methods. Animal Frontiers 13(4): 50–63. https://www.doi.org/10.1093/af/vfad015.
- [42] Zhao X., Vázquez-Gutiérrez J.L., Johansson D.P., Landberg R., Langton M. 2024. Insects as a sustainable protein source: A review of recent research. International Journal of Biological Macromolecules 183: 1–10.
- [43] Perez-Santaescolastica C., de Pril I., van de Voorde I., Fraeye I. 2023. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods 12(22): 4090. https://www.doi.org/10.3390/foods12224090
- [44] Kourimská L., Adámková A. 2016. Nutritional and sensory quality of edible insects. NFS Journal 4: 22–26. https://www.doi.org/10.1016/j.nfs.2016.07.001
- [45] Lisboa H.M., Nascimento A., Arruda A., Sarinho A., Lima J., Batista L., Dantas M.F., Andrade R. 2024. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 13: 1846. https://www.doi.org/10.3390/foods13121846.
- [46] Sinclair B.J., Marshall K.E. 2018. The many roles of fats in overwintering insects. Journal of Experimental Biology 221(1): jeb161836. https://www.doi.org/10.1242/jeb.161836
- [47] Lima D.B., Almeida R.D., Pasquali M., Borges S.P. 2018. Fook ML, Lisboa HM. Physical characterization and modeling of chitosan/peg blends for injectable scaffolds. Carbohydrate Polymers 189: 238–249.
- [48] Ojha S., Bekhit A.E.D., Grune T., Schlüter O.K. 2021. Bioavailability of nutrients from edible insects. Current Opinion In Food Science 41: 240–248. [
- [49] Oliveira L.A., S.M. Santana Pereira, Dias A.K., da Silva Paes S., Grancieri M., Jimenez L.G.S, Piler de Carvalho C.W., de Oliveira E.E., Stampini Duarte Martino H., Della Lucia C.M. 2024. Nutritional content, amino acid profile, and protein properties of edible insects (Tenebrio molitor and Gryllus assimilis) powders at different stages of development. Journal of Food Composition and Analysis 125: 105804. https://www.doi.org/10.1016/j.jfca.2023.105804.
- [50] Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14(8): 491–502. https://www.doi.org/10.1038/nrgastro.2017.75
- [51] Bonin M., Irion A.L., Jürß A., Pascual S., Cord-Landwehr S., Planas A., Moerschbacher B.M. 2024. Engineering of a chitin deacetylase to generate tailor-made chitosan polymers. PLOS Biology 22(1): e3002459. https://doi.org/10.1371/journal.pbio.3002459
- [52] Adepoju O.T., Omotayo O.O. 2014. Nutrient composition of four species of winged termites consumed in western Kenya. Journal of Food Composition and Analysis 33(1): 1–6. https://www.doi.org/10.1016/j.jfca.2013.11.004
- [53] Kunachowicz H., Nadolna I., Przygoda B., Iwanow K. 2005. Tabele składu i wartości odżywczej żywności. PZWL, Warsaw.
- [54] Alemu M.H., Olsen S.B. 2018. Kenyan Consumers’ Experience of Using Edible Insects as Food and Their Preferences for Selected Insect-Based Food Products. in: Edible Insects in Sustainable Food Systems, Springer 22: 363–374.
- [55] Schmidt A., Call L.M., Macheiner L., Mayer H.K. 2019. Determination of vitamin B12 in four edible insect species by immunoaffinity and ultra-high performance liquid chromatography. Food Chemistry 281: 124–129.
- [56] Seo M., Goo T.V., Chung M.Y., Baek M., Hwang J.-S., Kim M.-A., Yun E.-Y. 2017. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. International Journal of Molecular Sciences 18(3): 518. https://doi.org/10.3390/ijms18030518
- [57] Park B.M., Lim H.J., Lee B.J. 2021. Anti-obesity effects of Tenebrio molitor larvae powder in high-fat diet-induced obese mice. Journal of Nutrition and Health 54(4): 342–354.
- [58] Barragan-Fonseca K.B., Dicke M., van Loon J.J.A. 2017. Nutritional value of the black soldier fly (Hermetia illucensL.) and its suitability as animal feed – a review. Wageningen Academic Publishers, Wageningen.
- [59] Rosas-Campos R., Meza-Rios A., Rodriguez-Sanabria J.S., De la Rosa-Bibiano R., Corona-Cervantes K., García--Mena J., Santos A., Sandoval-Rodriguez A. 2022. Dietary supplementation with Mexican foods, Opuntia ficus indica, Theobroma cacao, and Acheta domesticus: Improving obesogenic and microbiota features in obese mice. Frontiers in Nutrition 9: 987222
- [60] Kim M.W., Ham Y.J., Kim H.B., Lee J.Y., Lim J.D., Lee H.T. 2023. Anti-obesity effects of the larval powder of steamed and lyophilized mature silkworms in a newly designed adult mouse model. Foods 12(19): 3613
- [61] Mmbone S. 2013. Effects of diet on the nutritional composition of the desert locust Schistocerca gregaria (Orthoptera: Acrididae). African Journal of Tropical Entomology Research 2(1): 1–10. https://doi.org/10.58697/AJTER020101
- [62] Kang Y., Oba P.M., Gaulke C.A., Sánchez-Sánchez L., Swanson K.S. 2023. Dietary inclusion of yellow mealworms (Tenebrio molitor) and lesser mealworms (Alphitobius diaperinus) modifies intestinal microbiota populations of diet-induced obesity mice. Journal of Nutrition 153(11): 3220–3236.
- [63] Salama S.M. 2020. Nutrient composition and bioactive components of the migratory locust (Locusta migratoria). In: A. Mariod (ed.), African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components. Springer, Cham: 231–239.
- [64] Igwe C.U., Onwuliri V.A., Ojiako A.O., Arukwe J.U. 2011. Effects of Macrotermes nigeriensis based diet on hepatic and serum lipids of albino rats. Australian Journal of Basic and Applied Sciences 5(7): 906–910.
- [65] Kim M.H., Kim S.J. 2023. Gryllus bimaculatus-containing diets protect against dexamethasone-induced muscle atrophy, but not high-fat diet-induced obesity. Food Supplements and Biomaterials for Health 1(4): e41
- [66] Boatta F., van Hal J., Beukeboom L.W., Ellers J. 2024. High-fat and high-sugar diets induce rapid adaptations of fat storage in the house fly Musca domestica L. Journal of Evolutionary Biology 37(11): 1368–1377.
- [67] Park K., Jung S., Ha J.H., Jeong Y. 2025. Protaetia brevitarsis Hydrolysate Mitigates Muscle Dysfunction and Ectopic Fat Deposition Triggered by a High-Fat Diet in Mice. Nutrients 17(2): 213. https://www.doi.org/10.3390/nu17020213
- [68] Park J.E., Han J.S. 2020. Oxya chinensis sinuosa extract: Potent glycosidase inhibitor alleviates postprandial hyperglycemia in diabetic mice. Journal of Life Science 30: 1054–1062.
- [69] Pessina F., Frosini M., Marcolongo P., Fusi F., Saponara S., Gamberucci A., Valoti M., Giustarini D., Fiorenzani P., Gorelli B., Francardi V., Botta M., Dreassi E. 2020. Antihypertensive, cardio- and neuro-protective effects of Tenebrio molitor (Coleoptera: Tenebrionidae) defatted larvae in spontaneously hypertensive rats. PLOS ONE 15(5): e0233788. https://doi.org/10.1371/journal.pone.0233788
- [70] Yoon Y.I., Chung M.Y., Hwang J.S., Han M.S, Goo T.W., Yun E.Y. 2015. Allomyrina dichotoma (Arthropoda: Insecta) larvae confer resistance to obesity in mice fed a high-fat diet. Nutrients 7: 1978–1991.
- [71] Ahn M.Y., Hwang J.S., Kim M.J., Park K.K. 2016. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Archives of Pharmacal Research 39: 926–936
- [72] Ryu S.P. 2014. Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats. The Journal of Nutritional Biochemistry 18: 141–149.
- [73] Ido A., Iwai T., Ito K., Ohta T., Mizushige T., Kishida T., Miura C., Miura T. 2015. Dietary effects of housefly (Musca domestica) (Diptera: Muscidae) pupae on the growth performance and the resistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Applied Entomology and Zoology 50: 213–221. https://doi.org/10.1007/s13355-015-0325-z
- [74] Malm M., Liceaga A.M. 2021. Physicochemical properties of chitosan from two commonly reared edible cricket species, and its application as a hypolipidemic and antimicrobial agent, Polysaccharides 2: 339–353. https://www.doi.org/10.3390/polysaccharides2020022
- [75] Im A.R., Yang W.K., Park Y.C., Kim S.H., Chae S. 2018. Hepatoprotective effects of insect extracts in an animal model of nonalcoholic fatty liver disease. Nutrients 10(6): 735. https://doi.org/10.3390/nu10060735
- [76] Huang J., Wu Q., Lin Z., Liu S., Su Q., Pan Y. 2020. Therapeutic effects of chitin from Pleurotus eryngii on high-fat diet induced obesity in rats. Acta Scientiarum Polonorum Technologia Alimentaria19, 3: 279–289.
- [77] Otto C., Lane M.D. 2005. Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology 40: 229–242. https://www.doi.org/10.1080/10409230591008189
- [78] Rizou E., Kalogiouri N., Bisba M., Papadimitriou A., Kyrila G., Lazou A., Andreadis S., Hatzikamari M., Mourtzinos I., Touraki M. 2022. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitorthrough probiotic supplemented feed. European Food Research and Technology 248: 727–739. https://doi.org/10.1007/s00217-021-03925-5
- [79] Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. 2017. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 52: 285–294. https://doi.org/10.1007/s11745-016-4220-3
- [80] Ros-Baró M., Casas-Agustench P., Díaz-Rizzolo D.A., Batlle-Bayer L., Adrià-Acosta F., Aguilar-Martínez A., Medina F.X., Pujolà M., Bach-Faig A. 2022. Edible Insect Consumption for Human and Planetary Health: A Systematic Review. International Journal of Environmental Research and Public Health 19(18): 11653. https://www.doi.org/10.3390/ijerph191811653.
- [81] Mancini S., Sogari G., Menozzi D., Nuvoloni R., Torracca B., Moruzzo R., Paci G. 2019. Factors predicting the intention of eating an insect-based product. Foods 8(7): 1–13.
- [82] Van Thielen L., Vermuyten S., Storms B., Rumpold B., Van Campenhout L. 2018. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market. Journal of Insects as Food and Feed 1: 1–10.
- [83] Caparros Megido R., Haubruge É., Francis F. 2018. Insects, The Next European Foodie Craze? In: A. Halloran, R. Flore, P. Vantomme, N. Roos (eds), Edible Insects in Sustainable Food Systems. Springer, Cham: 353–361.
- [84] Deroy O., Reade B., Spence C. 2015. The insectivore’s dilemma, and how to take the West out of it. Food Quality and Preference 44: 44–55.
- [85] La Barbera F., Verneau F., Amato M., Grunert K. 2018. Understanding Westerners’ disgust for the eating of insects: The role of food neophobia and implicit associations. Food Quality and Preference 64: 120–125. https://www.doi.org/10.1016/j.foodqual.2017.10.002
- [86] Ainslee L., Erhard A.L., Silva M.S., Damsbo-Svendsen M., Bat-El Menadeva Karpantschof B., Sørensen H., Frøst M.B. 2023. Acceptance of insect foods among Danish children: Effects of information provision, food neophobia, disgust sensitivity, and species on willingness to try. Food Quality and Preference 104: 713. https://www.doi.org/10.1016/j.foodqual.2022.104713
- [87] Dupont J., Fiebelkorn F. 2020. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Quality and Preference 85: 103983. https://www.doi.org/10.1016/j.foodqual.2020.103983.
- [88] Nyberg M., Olsson V., Wendin K. 2021. ‘Would you like to eat an insect?’ – Children’s perceptions of and thoughts about eating insects. International Journal of Consumer Studies 45: 248–258. https://www.doi.org/10.1111/ijcs.12616.
- [89] Marquis D. 2023. Targeting adolescents as agents of change for an entomophageous future. British Educational Research Journal 49: 1161–1186. https://www.doi.org/10.1002/berj.3891.
- [90] Florença S.G., Guiné R.P.F., Gonçalves F.J.A, Barroca M.J, Ferreir M., Costa C.A., Correia P.M.R., Cardoso A.P., Campos S., Anjos O. et al. 2022. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 11: 3643. https://www.doi.org/.3390/foods11223643.
- [91] Szczepanski L., Dupont J., Schade F., Hellberg H., Büscher M., Fiebelkorn F. 2022. Effectiveness of a teaching unit on the willingness to consume insect-based food – An intervention study with adolescents from Germany. Frontiers in Nutrition 9: 889805. https://www.doi.org/10.3389/fnut.2022.889805.
- [92] Szlachciuk J., Żakowska-Biemans S. 2024. Breaking the Taboo: Understanding the Relationship between Perception, Beliefs, Willingness to Eat Insects, and Food Neophobia among Polish Adults. Foods 13(6): 944.
- [93] Sogari G., Menozzi D., Mora C. 2018. The food neophobia scale and young adults’ intention to eat insect products. International Journal of Consumer Studies 42(6): 715–723.
- [94] Kinyuru J.N., Konyole S.O., Kenji G.M., Onyango C.A., Owino V.O., Owuor B.O., Estambale B.B., Friis H., Roos N. 2020. Insects as food: Illuminating the food neophobia and socio-cultural factors influencing consumption and consumers’ willingness to consume three edible insects in Uganda. Journal of Insects as Food and Feed 6(1): 1–10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0479d533-47bc-44ad-9d98-d99ee5b21e50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.