PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie logiki rozmytej w analizie warunków pogodowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of fuzzy logic in the analysis of weather conditions
Języki publikacji
PL
Abstrakty
PL
Tematem artykułu jest wykorzystanie logiki rozmytej w procesie rozpoznawania i analizy warunków pogodowych. System rozmyty, który wykorzystano do rozpoznawania pogody, został stworzony przy użyciu Matlaba, w aplikacji Fuzzy Logic Designer, skupiając się naintegracji logiki rozmytej i technik sztucznej inteligencji (AI), pokazując możliwości oferowane przez systemy AI w zarządzaniu niepewnością. Model rozpoznawania pogody wykorzystuje trzy zmienne wejściowe w postaci maksymalnej temperatury, minimalnej temperatury i wiatru, a także 35 reguł, które generują prognozę pogody, a mianowicie opady, które mogą być bardzo niskie, niskie,normalne, wysokie i bardzo wysokie.
EN
The topic of this paper is the use of fuzzy logic in the recognition and analysis of weather conditions. The fuzzy system used for weather recognition was created using Matlab, in the Fuzzy Logic Designer application, focusing on the integration of fuzzy logic and artificial intelligence (AI) techniques, demonstrating the possibilities offered by AI systems in managing uncertainty. The weather recognition model uses three input variables in the form of maximum temperature, minimum temperature and wind, as well as 35 rules that generate a weather forecast, namely precipitation, which can be very low, low, normal, high and very high.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Uniwersytet Kazimierza Wielkiego Wydział Informatyki ul. Kopernika 1, 85-064 Bydgoszcz
  • Uniwersytet Kazimierza Wielkiego Wydział Informatyki ul. Kopernika 1, 85-064 Bydgoszcz
  • Uniwersytet Kazimierza Wielkiego Wydział Informatyki ul. Kopernika 1, 85-064 Bydgoszcz
Bibliografia
  • [1] Müller, A.; Gillard, M.; Pagh Nielsen, K.; Piotrowski, Z. Batch 2: Definition of novel Weather & Climate Dwarfs.CoRR 2019, abs/1908.07040.
  • [2] Li, M.; Liu, Y.; Ji, Z.; Niu, D.; Zhang, H.Daily Load Forecasting of Electric Power Manufacturing Industry Considering Disaster Weather Recognition Under the Deep Learning.CCIS 2021, 243-249.
  • [3] Lionetti, S.; Pfäffli, D.; Pouly, M.; vor der Brück, T.; Wegelin, P.Tourism Forecast with Weather, Event, and Cross-industry Data. ICAART 2021, 1097-1104.
  • [4] Sripada, S.; Burnett, N.; Turner, R.; Mastin, J.; Evans, E.A Case Study: NLG meeting Weather Industry Demand for Quality and Quantity of Textual Weather Forecasts. INLG 2014, 1-5.
  • [5] Rahman, M.A. Improvement of Rainfall Prediction Model by Using Fuzzy Logic. AmericanJournal of Climate Change, 2020, 9, 391-399.
  • [6] Małolepsza, O. Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych. Studia i Materiały Informatyki Stosowanej 2023, 15, 1, 11-20.
  • [7] Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślęzak, D., Eds.; Theory and Applications of Ordered Fuzzy Numbers; Studies in Fuzziness and Soft, Computing; Springer: Cham, Switzerland, 2017; Volume 356.
  • [8] Kozielski, M.; Prokopowicz, P.; Mikołajewski, D. Aggregators Used in Fuzzy Control-A Review. Electronics 2024, 13, 3251. https://doi.org/10.3390/electronics13163251.
  • [9] Mikolajewska, E.; Prokopowicz, P; Mikolajewski, D. Computational gait analysis using fuzzy logic for everyday clinical purposes -preliminary findings. Bio-Algorithms and Med-Systems 2017, 13, 1, 37-42.
  • [10] Prokopowicz, P; Mikolajewski, D; Mikołajewska, E; Kotlarz, P. Fuzzy System as an Assessment Tool for Analysis of the Health-Related Quality of Life for the People After Stroke. 16th International Conference on Artificial Intelligence and Soft Computing (ICAISC) 2017, PT I, 10245 , pp.710-721.
  • [11] Peláez-Rodríguez, C.; Pérez-Aracil, J.; Madalin Marina, C.; Prieto-Godino, L.; Casanova-Mateo, C.; Gutiérrez, P. A.; Salcedo-Sanz, S. A general explicable forecasting framework for weather events based on ordinal classification and inductive rules combinedwith fuzzy logic. Knowl. Based Syst.2024, 291, 111556.
  • [12] Valverde, M.C.; Araujo, E.; de Campos Velho, H.F. Neural network and fuzzy logic statistical downscaling of atmospheric circulation-type specific weather pattern for rainfall forecasting. Appl. Soft Comput.2014, 22, 681-694.
  • [13] Bressane, A.; Garcia, A.J.d.S.; Castro, M.V.d.; Xerfan, S.D.; Ruas, G.; Negri, R.G. Fuzzy Machine Learning Applications in Environmental Engineering: Does the Abilityto Deal with Uncertainty ReallyMatter?Sustainability2024,16, 4525, https://doi.org/10.3390/su16114525.
  • [14] Ćesić, M.; Rogulj, K.; Kilić Pamuković, J.; Krtalić, A. A Systematic Review on Fuzzy Decision Support Systems and Multi-Criteria Analysis in Urban Heat Island Management.Energies2024,17, 2013. https://doi.org/10.3390/en17092013.
  • [15] Singpurwalla, N.D.; Booker, J.M. Membership Functions and Probability Measures of Fuzzy Sets. Journal of the American Statistical Association, 2004, 99, 467, 867–877. doi:10.1198/016214504000001196.
  • [16] Trach, Y.; Trach, R.; Kuznietsov, P.; Pryshchepa, A.; Biedunkova, O.; Kiersnowska, A.; Statnyk, I. Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models. Sustainability 2024, 16, 5835. https://doi.org/10.3390/su16145835.
  • [17] Zadeh, L.A. Fuzzy Sets. Information and Control 1965, 8, 338-353.
  • [18] Zadeh, L.A.; Aliev, R.A. Fuzzy Logic Theory And Applications: Part I And Part II. World Scientific, 2018.
  • [19] Azam, M.H.; Hasan, M.H.; Hassan, S.; Abdulkadir, S.J. Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means, In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), 2020.
  • [20] Mamdani, E. H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 1975, 7, 1, 1–13. doi:10.1016/s0020-7373(75)80002-2.
  • [21] Takagi, T.; Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15, 1, 116–132. doi:10.1109/tsmc.1985.6313399.
  • [22] Egaji, O.; Griffiths, A.; Hasan, M.; Yu, H. A comparison of Mamdani and Sugeno fuzzy based packet scheduler for MANET with a realistic wireless propagation model. International Journal of Automation and Computing2015, 12, 1-13. 10.1007/s11633-014-0861-y.
  • [23] Izquierdo, S.; Izquierdo, L.R. Mamdani Fuzzy Systems for Modelling and Simulation: A Critical Assessment. Journal of Artificial Societies and Social Simulation2018, 21, 3, 2, DOI: 10.18564/jasss.3660.
  • [24] Singla, M.K.; Kaur, H. D.; Nijhawan, P. Rain Prediction using Fuzzy Logic. International Journal of Engineering and Advanced Technology,2019, 9, 1.
  • [25] Dualibe, C.; Verleysen, M.; Jespers, P.G.A. Design of Analog Fuzzy Logic Controllers in CMOS Technologies: Implementation, Test and Application. Springer, 2003.
  • [26] Menyhárt, J.; Kalmár, F. Investigation of Thermal Comfort Responses with Fuzzy Logic. Energies 2019, 12, 1792. https://doi.org/10.3390/en12091792.
  • [27] Agboola, A. H.; Gabriel, A. J.; Aliyu, E. O., & Alese, B. K. Development of a Fuzzy Logic Based Rainfall Prediction Model. International Journal of Engineering and Technology, 2013, 3, 427-435.https://doi.org/10.5751/ES-05896-180422.
  • [28] Zhao, Q.; Lian, Z.; Lai, D. Thermal comfort models and their developments: A review.Energy Built Environ.2021,2, 21–33.
  • [29 ]https://www.britannica.com/science/mean-squared-error.
  • [30] https://www.britannica.com/science/coefficient-of-determination.
  • [31] Šuljug, J.; Spišić, J.; Grgić, K.; Žagar, D. A Comparative Study of Machine Learning Models for Predicting Meteorological Data in Agricultural Applications. Electronics 2024, 13, 3284. https://doi.org/10.3390/electronics13163284.
  • [32] Yona, A.; Senjyu, T.; Funabashi, T.; Mandal, P.; Kim, C.-H. Optimizing Re-planning Operation for Smart House.
  • Applying Solar Radiation Forecasting. Appl. Sci. 2014, 4, 366-379. https://doi.org/10.3390/app4030366.
  • [33] Rojek, I.; Mikołajewski, D.; Mroziński, A.; Macko, M. Green Energy Management in Manufacturing Based on Demand Prediction by Artificial Intelligence-A Review. Electronics 2024, 13, 3338. https://doi.org/10.3390/electronics13163338.
  • [34] Lu, J.; Bai, D.; Zhang, N.; Yu, T.; Zhang, X. Fuzzy Case-Based Reasoning System. Appl. Sci. 2016, 6, 189. https://doi.org/10.3390/app6070189.
  • [35] Zhang, X.; Ye, J.; Ma, S.; Gao, L.; Huang, H.; Xie, Q. MISAO: Ultra-Short-Term Photovoltaic Power Forecasting with Multi-Strategy Improved Snow Ablation Optimizer. Appl. Sci.2024, 14, 7297. https://doi.org/10.3390/app14167297.
  • [36] Han, M.; Leeuwenburg, T.; Murphy, B. Site-Specific Deterministic Temperature and Dew Point Forecasts with Explainable and Reliable Machine Learning. Appl. Sci.2024, 14, 6314. https://doi.org/10.3390/app14146314.
  • [37] Zou, M.; Gu, J.; Fang, D.; Harrison, G.P.; Djokic, S.Z.; Wang, X.; Zhang, Ch. Comparison of Three Methods for a Weather Based Day-Ahead Load Forecasting. ISGT Europe2019, 1-5
  • [38] Teixeira, R.; Cerveira, A.; Pires, E.J.S.; Baptista, J. Enhancing Weather Forecasting Integrating LSTM and GA. Appl. Sci. 2024, 14, 5769. https://doi.org/10.3390/app14135769.
  • [39] Hatıpoğlu, I.; Tosun, Ö. Predictive Modeling of Flight Delays at an Airport Using Machine Learning Methods. Appl. Sci. 2024, 14, 5472. https://doi.org/10.3390/app14135472.
  • [40] Son,L.H.;Thong, P.H.Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences.Appl. Intell. 2017, 46, 1, 1-15.
  • [41] Hu, F.; Zhang, L.; Wang, J. A Hybrid Convolutional–Long Short-Term Memory–Attention Framework for Short-Term Photovoltaic Power Forecasting, Incorporating Data from Neighboring Stations. Appl. Sci. 2024, 14, 5189. https://doi.org/10.3390/app14125189.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5dd5e4f4-db2b-45ec-ba0d-b97b79ead164
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.