PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Hardness Prediction Model of Turning Duplex Stainless Steel under Different Cutting Variables

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quality of machine components surfaces plays an important impact on their functional performance. Product performance may be restricted by changes to surface integrity, which includes changes to roughness, hardness, and microstructure. In this research, the impact of cutting variables in CNC turning under the conventional cooling condition on surface hardness of Duplex Stainless Steel. Cutting variables under conventional cooling, including cutting speed, feed, and depth of cut, have been optimized utilizing Taguchi’s L9 orthogonal array designed with three stages of turning variables. The optimal variable stages and the degree of significance of the cutting variables, respectively, were determined utilizing the analysis of means (ANOM) and analysis of variance (ANOVA). Effectiveness tests with optimum stages of variables were done to prove the viability of optimization by utilizing Taguchi. It has been found that the maximum surface hardness is most strongly affected by the feed 71.29%, followed by the depth of cut 12.1%, and finally the cutting speed 11.61%.
Słowa kluczowe
Twórcy
  • Automated Manufacturing Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadriayh, Baghdad, Iraq
  • Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadriayh, Baghdad, Iraq
  • Automated Manufacturing Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Al-Jadriayh, Baghdad, Iraq
Bibliografia
  • 1. Marina K., Michael P. Duplex Steels: Part I: Genesis, Formation, Structure. Metallography, Microstructure, and Analysis 2013; 2: 113–121.
  • 2. Ihsan K., Mustafa K., Ibrahim C., Ulvi S. Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Materials & Design. 2004; 25: 303–305.
  • 3. Antony J., Kaye M. Experimental Quality—A Strategic Approach to Achieve and Improve Quality. Kluwer Academic Publishers, 1999.
  • 4. Douglas C. Design and Analysis of Experiments. John Wiley & Sons, 1997.
  • 5. Madhav S. Quality Engineering Using Robust Design. Prentice-Hall International, 1989.
  • 6. Philip J. Taguchi Techniques for Quality Engineering. McGraw-Hill, 1996.
  • 7. Omar J., Verónica C., María C. Surface hardness prediction based on cutting parameters in turning of annealed AISI 1020 steel. DYNA. 2017; 84(203): 31–36.
  • 8. Komson J., Choobunyen K. Effect of Turning Parameters on Roundness and Hardness of Stainless Steel: SUS 303. AASRI Procedia. 2012; 3; 160–165.
  • 9. Krolczyk G., Legutko K., Stoic A. Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process. Tehnički vjesnik. 2013; 6: 1077–1080.
  • 10. Arumugam A., Ragothsingh R. Optimization of Turning Process Parameters for Hardness in Forged Steel. International Journal of Engineering Research & Technology (IJERT). 2013; 2(12): 2401–2405.
  • 11. Wojtowicz N., Danis I., Frederic M., Pascal L., Chieragati R. The influence of cutting conditions on surface integrity of a wrought magnesium alloy. Procedia Engineering. 2013; 6: 20–28.
  • 12. Krolczyk G., Nieslony P., Legutko S. Microhardness and surface integrity in turning process of duplex stainless steel (DSS) for different cutting conditions. Journal of Materials Engineering and Performance. 2014; 3: 859–866.
  • 13. Bombale R., Kadlag V., Mahajan D. Effect of Cutting Parameters on Surface Quality of Mild Steel (Grade A) in CNC Turning – A Case Study. International Advanced Research Journal in Science, Engineering and Technology. 2016; 3(1): 210–216.
  • 14. Sada S. Improving the predictive accuracy of artificial neural network (ANN) approach in a mild steel turning operation. The International Journal of Advanced Manufacturing Technology. 2021; 112(9–10): 2389–2398.
  • 15. Benedict S., Jeanine B., Daniel G., David B., Michael G., Gisela L., Bernd W., Volker S. Modeling of surface hardening and roughness induced by turning AISI 4140 QT under different machining conditions. Procedia CIRP. 2022; 108: 293–298.
  • 16. Tian-Syung L. Taguchi optimization of Multi objective CNC machining using TOPSIS. Information Technology Journal. 2009; 8(6): 917–922.
  • 17. Osamah F., Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS). Al-Khwarizmi Engineering Journal. 2021; 17(2): 8–17.
  • 18. Anthony X., Adithan M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. Journal of Materials Processing Technology. 2009; 209: 900–909.
  • 19. Minitab Inc., “Minitab User Manual”, Version 16, 2011; State College, Pennsylvania, USA.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dadef00-0a74-485b-938d-36492b4d5308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.