PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the spur gear condition using extended frequency range

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena stanu przekładni zębatej z wykorzystaniem rozszerzonego zakresu częstotliwości
Języki publikacji
EN
Abstrakty
EN
The paper focuses on working out an algorithm for spur gear condition monitoring, based on the results of numerical simulation. The nonlinear mathematical model has been used for investigation of the dynamic parameters of the cylindrical spur gear with defective teeth. Backlash between gear teeth, backlash in bearings, time-varying mesh stiffness, and variations of the centre distance have been evaluated in the model. Diagnostic parameters suitable for determining the condition of the gears under investigation have been established. Frequency intervals mostly affected by changes in diagnostic parameters under damage have been found. An algorithm for diagnostics based on mathematical modelling, vibro-acoustic, and acoustic emission methods, and wavelet transform has been worked out.
PL
Celem artykułu było opracowanie algorytmu monitorowania stanu przekładni zębatej w oparciu o wyniki symulacji numerycznej. Przedstawiono nieliniowy model matematyczny, który wykorzystano do badania parametrów dynamicznych przekładni zębatej walcowej z uszkodzonymi zębami. Za pomocą przedstawionego modelu oceniano luz pomiędzy zębami przekładni, luz w łożyskach, zmienną w czasie sztywność zazębienia oraz zmiany odległości osi. Ustalono parametry diagnostyczne odpowiednie dla określenia stanu technicznego badanych przekładni. Znaleziono przedziały częstotliwości odpowiadające zmianom parametrów diagnostycznych wynikającymi z uszkodzenia. Opracowano algorytm diagnostyczny oparty na modelowaniu matematycznym, metodach emisji wibroakustycznej i emisji akustycznej oraz transformacie falkowej.
Rocznik
Strony
476--484
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Faculty of Transport Engineering Vilnius Gediminas Technical University Plytines str., 27-307 Vilnius, Lithuania
  • Faculty of Transport Engineering Vilnius Gediminas Technical University Plytines str., 27-315 Vilnius, Lithuania
autor
  • Faculty of Transport Engineering Vilnius Gediminas Technical University Plytines str., 27-304 Vilnius, Lithuania
Bibliografia
  • 1. Amabili M, Rivola A. Dynamic analysis of spur gear pairs: steady-state response and stability of the SDOF model with time-varying meshing damping. Mech. Syst. Signal Process 1997; 11: 375–390, https://doi.org/10.1006/mssp.1996.0072.
  • 2. Cheon G J. Nonlinear behavior. Analysis of spur gear pairs with a one-way clutch. Journal of Sound and Vibration 2007; 301: 760–776, https://doi.org/10.1016/j.jsv.2006.10.040.
  • 3. Fakher C, Walid B, Mohamed S A, Mohamed H. Effect of spalling or tooth breakage on gear mesh stiffness and dynamic response of a one-stage spur gear transmission. European Journal of Mechanics A/Solids 2008; 27: 691–705, https://doi.org/10.1016/j.euromechsol.2007.11.005.
  • 4. Fakhfakh T, Walha L, Louati J, Haddar M. Effect of manufacturing and assembly defects on two-stage gear system vibration. The International Journal of Advanced Manufacturing Technology 2005; 29(9): 1008–1018, https://doi.org/10.1007/s00170-004-2253-x.
  • 5. Frolov V K, Kosarev O I. Control of gear vibrations at their source. International Applied Mechanics 2003; 39(1): 49–55, https://doi. org/10.1023/A:1023612015873.
  • 6. He Q, Kong F, Yan R. Subspace- based gearbox condition monitoring by kernel principal component analysis. Mechanical Systems and Signal Processing 2007; 21: 1755–1772, https://doi.org/10.1016/j.ymssp.2006.07.014.
  • 7. He S, Cho S, Singh R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations. Journal of Sound and Vibration 2008; 309: 843–851, https://doi.org/10.1016/j.jsv.2007.06.077.
  • 8. Jia S X, Howard I. Comparison of localized spalling and crack damage from dynamic modelling of spur gear vibrations. Mechanical Systems and Signal Processing 2006; 20: 332–349, https://doi.org/10.1016/j.ymssp.2005.02.009.
  • 9. Kahraman A, Singh R. Non-linear dynamics of a spur gear pair. Journal of Sound and Vibration 1990; 142(1): 49-75, https://doi. org/10.1016/0022-460X(90)90582-K.
  • 10. Kang Y, Wang C-C, Chang Y-P. Gear fault diagnosis in time domains by using Bayesian networks. Theoretical Advances and Applications of Fuzzy Logic and Soft. Series: Computing Advances in Soft Computing 2007; 42: 741–751, https://doi.org/10.1007/978-3-540-72434-6_75
  • 11. Kiekbusch T, Howard I. A Common Formula for the Combined Torsional Mesh Stiffness of Spur Gears. Proceedings of the 5th Australasian Congress on Applied Mechanics (ACAM 2007), Brisbane, Australia 2007; 710–716.
  • 12. Kuang J H, Lin A D. The effect of tooth wear on the vibration spectrum of a spur gear pair. Journal of Vibration and Acoustics 2001; 123(3): 311–317, https://doi.org/10.1115/1.1379371.
  • 13. Kuang J H, Yang Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair. in Proceeding of ASME 6th International Power Transmission and Gearing Conference, 13–16 September 1992, Scottsdale, Arizona 1992; 1–9.
  • 14. Lei Y, Zuo M J. Gear crack level identification based on weighted K nearest neighbour classification algorithm. Mechanical Systems and Signal Processing 2009; 23(5): 1535–1547, https://doi.org/10.1016/j.ymssp.2009.01.009.
  • 15. Litak G, Friswell M I. Dynamics of a gear system with faults in meshing stiffness. Nonlinear Dynamics 2005; 41: 415–421, https://doi. org/10.1007/s11071-005-1398-y.
  • 16. Loutas T H, Roulias D, Pauly E, Kostopoulos V. The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery. Mechanical Systems and Signal Processing 2011; 25(4): 1339–1352, https:// doi.org/10.1016/j.ymssp.2010.11.007.
  • 17. Ma H, Pang X, Feng R, Song R, Wen B. Fault features analysis of cracked gear considering the effects of the extended tooth contact. Engineering Failure Analysis 2015; 48: 105–120, https://doi.org/10.1016/j.engfailanal.2014.11.018.
  • 18. Maliha R, Dogruer C U, Özgüven H N. Nonlinear dynamic modeling of gear-shaft-disk-bearing systems using finite elements and describing functions. Journal of Mechanical Design 2004; 126(3): 534–541, https://doi.org/10.1115/1.1711819.
  • 19. Martin H R. Statistical moment analysis as a means of surface damage detection. Proceedings of the 7th International Modal Analysis Conference, Society for Experimental Mechanics, Schenectady, NY 1989; 1016–1021.
  • 20. Mba D. Acoustic Emissions and monitoring bearing health. Tribology Transactions 2003; 46(3): 447–451, https://doi. org/10.1080/10402000308982649.
  • 21. McClintic K, Lebold M, Maynard K, Byington C, Campbell R. Residual and difference feature analysis with transitional gearbox data. Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention technology, Virginia Beach, VA, May 1–4 2000; 635–645.
  • 22. Mohammeda O D, Rantatalo M, Aidanpää J O, Kumar U. Vibration signal analysis for gear fault diagnosis with various crack progression scenarios. Mechanical Systems and Signal Processing 2013; 41: 176–195, https://doi.org/10.1016/j.ymssp.2013.06.040.
  • 23. Ozguven H N, Houser D R. Mathematical model used in gear dynamics - a review. Journal of Sound and Vibration 1988; 121: 383–411, https://doi.org/10.1016/S0022-460X(88)80365-1.
  • 24. Qu J, Liu Z, Zuo M J, Huang H-Z. Feature selection for damage degree classification of planetary gearboxes using support vector machine. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science 2011; 225(9): 2250–2264, https://doi.org/10.1177/0954406211404853.
  • 25. Sait A S, Sharaf-Eldeen Y I. A review of gearbox condition monitoring based on vibration analysis techniques diagnostics and prognostics. Proceedings of the 29th IMAC, A Conference on Structural Dynamics 2011; 307–324, https://doi.org/10.1007/978-1-4419-9428-8_25.
  • 26. Samanta B, Al-Balushi K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing 2003; 17(2): 317–328, https://doi.org/10.1006/mssp.2001.1462.
  • 27. Saxena A, Parey A, Chouksey M. Effect of shaft misalignment and friction force on time varying mesh stiffness of spur gear pair. Engineering Failure Analysis 2015; 49: 79–91, https://doi.org/10.1016/j.engfailanal.2014.12.020.
  • 28. Skrickij V, Bogdevičius M, Junevičius R. Diagnostic features for the condition monitoring of hypoid gear utilizing the wavelet transform, Applied Acoustics 2016; 106: 51–62, https://doi.org/10.1016/j.apacoust.2015.12.018.
  • 29. Skrickij V, Bogdevičius M. Vehicle gearbox dynamics: centre distance influence on mesh stiffness and spur gear dynamics. Transport 2010; 25(3): 278–286, https://doi.org/10.3846/transport.2010.34.
  • 30. Staszewski W J, Worden K. Classification of faults in gearboxes – pre-processing algorithms and neural networks. Neural Computing & Applications 1997; 5(3): 160–183, https://doi.org/10.1007/BF01413861.
  • 31. Taylor J I, Kirkland D W. The bearing analysis handbook: a practical guide for solving vibration problems in bearings. Vibration Consultant. 2004.
  • 32. Utagawa M. Dynamic loads on spur gear teeth. The Japan Society of Mechanical Engineers 1958; 1(4): 397–403, https://doi.org/10.1299/ jsme1958.1.397.
  • 33. Vaishya M, Singh R. Sliding friction-induced non-linearity and parametric effects in gear dynamics. Journal of sound and vibration 2001; 248(4): 671–694, https://doi.org/10.1006/jsvi.2001.3818.
  • 34. Walha L, Fakhfakh T, Haddar M. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mechanism and Machine Theory 2009; 44(5): 1058–1069, https://doi.org/10.1016/j.mechmachtheory.2008.05.008.
  • 35. Wang J, Li R, Peng X. Survey of nonlinear vibration of gear transmission systems. Applied Mechanics Reviews 2003; 56: 309–329, https:// doi.org/10.1115/1.1555660.
  • 36. Wojnarowski J, Onishchenko V. Tooth wear effects on spur gear dynamics. Mechanism and Machine Theory 2003; 38: 161–178, https://doi. org/10.1016/S0094-114X(02)00091-5.
  • 37. Yang D C H, Lin J Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. Journal of Mechanisms, Transmissions, and Automation in Design 1987: 109(2): 189–96, https://doi.org/10.1115/1.3267437.
  • 38. Yu J-B. Bearing performance degradation assessment using locality preserving projections. Expert Systems with Applications 2011; 38: 7440–7450, https://doi.org/10.1016/j.eswa.2010.12.079.
  • 39. Zakrajsek J J, Townsend D P, Decker H J. An analysis of gear fault detection methods as applied to pitting fatigue failure data, The Systems engineering Approach to Mechanical Failure Prevention, Technical report, 47th Meeting of the MFPG 1993.
  • 40. Zouari S, Maatar M, Fakhfakh T, Haddar M. Three-dimensional analyses by finite element method of a spur gear: effect of cracks in the teeth foot on the mesh stiffness. Journal of Failure Analysis and Prevention 2007; 7: 475–481, https://doi.org/10.1007/s11668-007-9078-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0de3137e-15be-43b9-9330-d5bb6c1da278
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.