Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Combinatorial optimization challenges are rooted in real-life problems, continuous optimization problems, discrete optimization problems and other significant problems in telecommunications which include, for example, routing, design of communication networks and load balancing. Load balancing applies to distributed systems and is used for managing web clusters. It allows to forward the load between web servers, using several scheduling algorithms. The main motivation for the study is the fact that combinatorial optimization problems can be solved by applying optimization algorithms. These algorithms include ant colony optimization (ACO), honey bee (HB) and multi-objective optimization (MOO). ACO and HB algorithms are inspired by the foraging behavior of ants and bees which use the process to locate and gather food. However, these two algorithms have been suggested to handle optimization problems with a single-objective. In this context, ACO and HB have to be adjusted to multiobjective optimization problems. This paper provides a summary of the surveyed optimization algorithms and discusses the adaptations of these three algorithms. This is pursued by a detailed analysis and a comparison of three major scheduling techniques mentioned above, as well as three other, new algorithms (resulting from the combination of the aforementioned techniques) used to efficiently handle load balancing issues.
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, Lodz, Poland
autor
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, Lodz, Poland
Bibliografia
- [1] F. Mbarek and V. Mosorov, „Load balancing algorithms in heterogeneous Web cluster", in Proc. Intern. Interdiscipl. PhD Worksh. IIPhDW 2018, .winouj±cie, Poland, 2018, pp. 205-208 (doi: 10.1109/IIPHDW.2018.8388358).
- [2] A. A. Rajguru and S. S. Apte, „A comparative performance analysis of load balancing algorithms in distributed system using qualitative parameters", Int. J. of Recent Technol. and Engin. (IJRTE), vol. 1, pp. 175-179, 2012 (ISSN: 2277-3878).
- [3] C. Blum, „Ant Colony Optimization: Introduction And Recent Trends", Phys. of Life Rev., vol. 2, no. 4, pp. 353-357, 2005 (doi: 10.1016/j.plrev.2005.10.001).
- [4] D. Constantinou, „Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networks", Ph.D. Thesis, University of Pretoria, Hatfield, Pretoria, South Africa, August 2010 [Online]. Available: http://hdl.handle.net/2263/25981
- [5] Z. Zhang and X. Zhang, „A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation", in Proc. 2nd Int. Conf. on Industr. Mechatron. and Autom. ICIMA 2010, Wuhan, China, 2010, pp. 240-243 (doi: 10.1109/ICINDMA.2010.5538385).
- [6] R. Kumar and G. Sahoo, „A load balancing using ant colony in cloud computing", Int. J. of Inform. Technol. Conver. and Serv. (IJITCS), vol. 3, no. 5, pp. 1-5, 2013 (doi: 10.5121/ijitcs.2013.3501).
- [7] R. Mishra and A. Jaiswal, „Ant colony Optimization: a solution of load balancing in cloud", Int. J. of Web and Semantic Technol. (IJWesT), vol. 3, no. 2, pp. 33-50, 2012 (doi: 10.5121/ijwest.2012.3203).
- [8] L. Kun, X. Gaochao, Z. Guangyu, D. Yushuang, and W. Dan, „Cloud task scheduling based on load balancing ant colony optimization", in Proc. 6th Ann. ChinaGrid Conf. ChinaGrid 2011, Liaoning, China, 2011, pp. 3-9 (doi: 10.1109/ChinaGrid.2011.17).
- [9] E. Arun, A. Reji, P. M. Shameem, and R. S. Shaji, „Novel algorithm for load balancing in mobile cloud networks: multi-objective optimization approach", Wirel. Personal Commun., vol. 97, no. 2, pp. 3125-3140, 2017 (doi: 10.1007/s11277-017-4665-6).
- [10] R. Li, Q. Zheng, X. Li, and J.Wu, „A novel multi-objective optimization scheme for rebalancing virtual machine placement", in Proc. IEEE 9th Int. Conf. on Cloud Comput. CLOUD 2016, San Francisco, CA, USA, 2016, pp. 1-7 (doi: 10.1109/CLOUD.2016.0099).
- [11] P. Ehsanimoghadam and M. Effatparvar, „Load balancing based on bee colony algorithm with partitioning of public clouds", Int. J. of Adv. Comp. Sci. and Appl. (IJACSA), vol. 9, no. 4, pp. 450-455, 2018 (doi: 10.14569/IJACSA.2018.090462).
- [12] M. Dorigo, „The ant colony optimization meta-heuristic: algorithms, applications, and advances", in Handbook of Metaheuristics, M. Gendreau, J.-Y. Potvin, Eds. Springer, 2003, pp. 251-285 (doi: 10.1007/0-306-48056-5 9).
- [13] M. Dorigo, G. Di Caro, and L. M. Gambardella, „Ant algorithms for discrete optimization", Artif. Life, vol. 5, no. 2, pp. 137-172, 1999 (doi: 10.1162/106454699568728).
- [14] D. Darquennes, „Implementation and applications of ant colony algorithms", Master Thesis, Facultfiees Universitaires Notre-Damedela Paix, Namur, Institut d'Informatique, 2005 [Online]. Available: http://www.swarm-bots.org/_mdorigo/HomePageDorigo/thesis/master/DarquennesMASTER.pdf
- [15] C. Jankowski, „Social Structure of the Honey Bee" [Online]. Available: http://animals.mom.me/social-structure-honeybee-7317.html (accessed on Feb. 24, 2018).
- [16] S. Bitam, „Bees life algorithm for job scheduling in cloud computing", in Proc. 3rd Int. Conf. on Commun. and Inform. Technol. ICCIT 2012, Hammamet, Tunisia, 2012, pp. 186-191 [Online]. Available: https://pdfs.semanticscholar.org/1823/27d9c30c4970313704c53701100771d85bed.pdf
- [17] O. Bin Hassan and A. S. Ahmad, „Optimum load balancing of cloudlets using honey bee behavior load balancing algorithm", Int. J. of Adv. Res. in Comp. Sci. and Manag. Studies, vol. 3, pp. 334-339, 2015 (ISSN: 2321-7782).
- [18] B. Yuce, M. S. Packianather, E. Mastrocinque, D. C. Pham, and A. Lambiase, „Honey bees inspired optimization method: the bees algorithm", Insects 2013, vol. 4, pp. 646-662, 2013 (doi: 10.3390/insects4040646).
- [19] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms For Solving Multi-Objective Problems, 2nd ed. Springer, 2007 (doi: 10.1007/978-0-387-36797-2).
- [20] R. T. Marler and J. S. Arora, „Survey of multi-objective optimization methods for engineering", Struct. Multidisc. Optim., vol. 26, no. 6, pp. 369-395, 2004 (doi: 10.1007/s00158-003-0368-6).
- [21] A. Mukerjee, R. Biswas, K. Deb, and A. P. Mathur, „Multi-objective evolutionary algorithms for the risk return trade-off in bank loan management", KanGAL Report Number 2001005, 2001 [Online]. Available: https://www.iitk.ac.in/kangal/reports.shtml#2001
- [22] K. Deb, „Multi-objective optimization using evolutionary algorithms: an introduction", KanGAL Report Number 2011003, pp. 1-24, 2011 [Online]. Available: https://www.egr.msu.edu/_kdeb/papers/k2011003.pdf
- [23] C. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, 2002, pp. 4-13 (ISBN: 0306467623).
- [24] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, „Comparison of multi-objective optimization methodologies for engineering applications", Comp. and Mathem. with Appl., vol. 63, no. 5, pp. 912-942, 2012 (doi: 10.1016/j.camwa.2011.11.057).
- [25] E. Zitzler, „Evolutionary algorithms for multi-objective optimization: methods and applications". Ph.D. Thesis, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, 1999 [Online]. Available: https://sop.tik.ee.ethz.ch/publicationListFiles/zitz1999a.pdf (doi: 10.3929/ethz-a-003856832).
- [26] A. Soni, G. Vishwakarma, and Y. K. Jain, „A bee colony based multi-objective load balancing technique for cloud computing environment", Int. J. of Comp. Appl., vol. 114, no. 4, pp. 19-25, 2015 (doi: 10.5120/19967-1825).
- [27] S. Srichandan, T. A. Kumar, and S. Bibhudatta, „Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm", Future Comput. and Inform. J., vol. 3, no. 2, pp. 1-21, 2018 (doi: 10.1016/j.fcij.2018.03.004).
- [28] P. Cardoso, M. Jesus, and A. Marquez, „MONACO - multi-objective network optimization based on an ACO", in Proc. of 10th Enguentros de Geometria Computacional, Sevilla, Spain, 2003, pp. 1-10, 2003.
- [29] P. B. Gothi and D. V. Vekariya, „An eficient approach for load balancing using dynamic AB algorithm in cloud computing", Int. J. of Innov. Res. in Comp. and Commun. Engin., vol. 4, no. 4, pp. 7767-7773, 2016 (doi: 10.15680/IJIRCCE.2016.0404283).
- [30] F. Mbarek and V. Mosorov, „A load balancing system to protect servers against DDoS attacks", in Algorithms, Networking and Sensing for Data Processing, Mobile Computing and Applications, A. Romanowski, D. Sankowski, and J. Sikora, Eds. .ód¹: Lodz University of Technology Press, 2016, pp. 55-74 (ISBN: 9788372837387).
- [31] P. Kanungo, „Measuring performance of dynamic load balancing algorithms in distributed computing applications", Int. J. of Adv. Res. in Comp. and Commun. Engin., vol. 2, no. 10, pp. 4063-4066, 2013 ([Online]. Available: https://pdfs.semanticscholar.org/ee91/3f3d20f107ae269f66adc72c4b4f6fa71993.pdf
- [32] S. Khan and N. Sharma, „Effective scheduling algorithm for load balancing (SALB) using ant colony optimization in cloud computing", Int. J. of Adv. Res. in Comp. Sci. and Softw. Engin., vol. 4, no. 2, pp. 966-973, 2014 [Online]. Available: https://pdfs.semanticscholar.org/e2cc/4722d826943c99a3bdb5eb7dde8797516a25.pdf? ga=2.168973801.915765179.1571657419-1047092990.1571657419
- [33] Q. Zheng et al., „Multi-objective optimization algorithm based on BBO for virtual machine consolidation problem", in Proc. 21st Int. Conf. on Parall. and Distrib. Sys. ICPADS 2015, Melbourne, VIC, Australia, 2015, pp. 414-421 (doi: 10.1109/ICPADS.2015.59).
- [34] F. Fang and B. B. Qu, „Multi-objective virtual machine placement for load balancing", in Proc. Int. Conf. on Inform. Science an Technol. IST 2017, Wuhan, Hubei, China, 2017, pp. 1-9 (doi: 10.1051/itmconf/20171101011).
- [35] W. Hashem, H. Nashaat, and R. Rizk, „Honey bee based load balancing in cloud computing", KSII Trans. on Internet and Inform. Syst., vol. 11, no. 12, pp. 5694-5711, 2017 (doi: 10.3837/tiis.2017.12.001).
- [36] M. Kashefikia, N. Nematbakhsh, and R. A. Moghadam, „Multiple ant-bee colony optimization for load balancing in packet-switched networks", Int. J. of Comp. Netw. and Commun. (IJCNC), vol. 3, no. 5, pp. 107-117, 2011 (doi: 10.5121/ijcnc.2011.3508).
- [37] L. Zuo, P. Shu, S. Dong, C. Zhu, and T. Hara, „A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing", Big Data Services and Computational Intelligence for Industrial Systems, IEEE Access, vol. 3, pp. 2687-2699, 2015 (doi: 10.1109/ACCESS.2015.2508940).
- [38] M. B. Jasser, M. Sarmini, and R. Yaseen, „Ant colony optimization (ACO) and a variation of bee colony optimization (BCO) in solving TSP problem, a comparative study", Int. J. of Comp. Appl., vol. 96, no. 9, pp. 1-8, 2014 (doi: 10.5120/16819-6587).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-791f0255-6878-414d-8e87-adbce4306087