PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined bending-tension/compression deformation of micro-bars accounting for strain-driven long-range interactions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper aims to investigate combined bending-tension/compression deformation of a micro-bar. The strain-driven nonlocal differential model which involves information about long-range interactions between atoms is used to develop the mechanical model and theoretical formulations. Subsequently, effects of internal long-range scale parameter, length of micro-bar, external loads and bending rigidity on combined deformation are shown and discussed. In particular, the upper bound of internal longrange scale parameter and the buckling load are achieved during bending-compression analyses. It is demonstrated that the existence of internal scale parameter or axial tensile load decreases combined deformation. The deflection at the midpoint reduces with increasing bending rigidity, while it rises with increasing length of the microbar. Additionally, an effect of the acting position of transverse load on combined deformation is discussed and deflection at the symmetry point of transverse acting position is achieved. When the long-range interaction is taken into consideration, the equivalent stiffness of the micro-bar subjected to combined bending-tension is stiffer than that predicted by classical mechanics, and it validates the existing nonlocal hardening model. The combined bending-compression of the micro-bar reveals that the deflection may increase or decrease with an increase in the long-range scale or structural length, which verifies both the nonlocal softening and hardening models.
Rocznik
Strony
3--21
Opis fizyczny
Bibliogr. 36 poz., rys. kolor.
Twórcy
autor
  • Department of Vehicle Engineering, School of Rail Transportation, Soochow University, Suzhou 215131, Jiangsu, China
autor
  • Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, Guangdong, China
autor
  • Department of Vehicle Engineering, School of Rail Transportation, Soochow University, Suzhou 215131, Jiangsu, China
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures and College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
Bibliografia
  • 1. L.F.Wang, H.Y. Hu, Flexural wave propagation in single-walled carbon nanotubes, Physical Review B, 71, 195412, 2005.
  • 2. J. Zhao, J.W. Jiang, L. Wang, W. Guo, T. Rabczuk, Coarse-grained potentials of single-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids, 71, 197–218, 2014.
  • 3. E. Secchi, S. Marbach, A. Nigues, D. Stein, A. Siria, L. Bocquet, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537, 210–213, 2016.
  • 4. J.N. Jiang, L.F. Wang, Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions, Acta Mechanica Solida Sinica, 30, 474–483, 2017.
  • 5. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, International Journal of Engineering Science, 10, 233–248, 1972.
  • 6. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703–4710, 1983.
  • 7. J. Peddieson, G.R. Buchanan, R.P. Mcnitt, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 305–312, 2003.
  • 8. Q. Wang, V.K. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Materials and Structures, 15, 659–666, 2006.
  • 9. R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, 375, 53–62, 2010.
  • 10. F.M. De Sciarra, R. Barretta, A new nonlocal bending model for Euler-Bernoulli nanobeams, Mechanics Research Communications, 62, 25–30, 2014.
  • 11. L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, 97, 84–94, 2015.
  • 12. A. Bahrami, A. Teimourian, Nonlocal scale effects on buckling, vibration and wave reflection in nanobeams via wave propagation approach, Composite Structures, 134, 1061–1075, 2015.
  • 13. X.J. Xu, Z.C. Deng, K. Zhang, W. Xu, Observations of the softening phenomena in the nonlocal cantilever beams, Composite Structures, 145, 43–57, 2016.
  • 14. Z. Rahimi, G. Rezazadeh, W. Sumelka, X.J. Yang, A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory, Archives of Mechanics, 69, 413–433, 2017.
  • 15. H.B. Li, X. Wang, J.B. Chen, Nonlinear dynamic responses of triple-layered grapheme sheets under moving particles and an external magnetic field, International Journal of Mechanical Sciences, 136, 413–423, 2018.
  • 16. H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 3379–3391, 2008.
  • 17. C.W. Lim, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics, 31, 37–54, 2010.
  • 18. C.W. Lim, J.C. Niu, Y.M. Yu, Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales, Journal of Computational and Theoretical Nanoscience, 7, 2104–2111, 2010.
  • 19. C. Li, C.W. Lim, J.L. Yu, Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Materials and Structures, 20, 015023, 2011.
  • 20. M. Zingales, Wave propagation in 1D elastic solids in presence of long-range central interactions, Journal of Sound and Vibration, 330, 3973–3989, 2011.
  • 21. Z. Huang, Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions, International Journal of Solids and Structures, 49, 2150–2154, 2012.
  • 22. C. Li, A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries, Composite Structures, 118, 607–621, 2014.
  • 23. J.J. Liu, C. Li, C.J. Yang, J.P. Shen, F. Xie, Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory, Journal of Vibration and Control, 23, 3327–3344, 2017.
  • 24. G. Romano, R. Barretta, Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, 115, 14–27, 2017.
  • 25. G. Romano, R. Barretta, M. Diaco, On nonlocal integral models for elastic nanobeams, International Journal of Mechanical Sciences, 131–132, 490–499, 2017.
  • 26. G. Romano, R. Luciano, R. Barretta, M. Diaco, Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours, Continuum Mechanics and Thermodynamics, 30, 641–655, 2018.
  • 27. R. Barretta, S.A. Faghidian, R. Luciano, C.M. Medaglia, R. Penna, Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models, Composites Part B, 154, 20–32, 2018.
  • 28. R. Barretta, S. Ali Faghidian, R. Luciano, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2018.1432806, 2018.
  • 29. R. Barretta, M. Čanadija, L. Feo, R. Luciano, F.M. De Sciarra, R. Penna, Exact solutions of inflected functionally graded nano-beams in integral elasticity, Composites Part B, 142, 273–286, 2018.
  • 30. R. Barretta, M. Diaco, L. Feo, R. Luciano, F.M. De Sciarra, R. Penna, Stress-driven integral elastic theory for torsion of nano-beams, Mechanics Research Communications, 87, 35–41, 2018.
  • 31. R. Barretta, F.M. De Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, International Journal of Engineering Science, 130, 187–198, 2018.
  • 32. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78, 298–313, 2015.
  • 33. C. Li, Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model, International Journal of Mechanical Sciences, 82, 25–31, 2014.
  • 34. C. Li, S. Li, L.Q. Yao, Z.K. Zhu, Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models, Applied Mathematical Modelling, 39, 4570–4585, 2015.
  • 35. J.P. Shen, C. Li, A semi-continuum-based bending analysis for extreme-thin micro/nanobeams and new proposal for nonlocal differential constitution, Composite Structures, 172, 210–220, 2017.
  • 36. C. Li, S.H. Sui, L. Chen, L.Q. Yao, Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale, Smart Structures and Systems, 21, 279–286, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019.)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09df5f29-160a-4959-9721-c3b24eb4e629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.