PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the hybrid Caputo-proportional fractional differential inclusions in Banach spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current article concerns an existence criteria of solutions of nonlinear fractional differential inclusions in the sense of the hybrid Caputo-proportional fractional derivatives in Banach space. The investigation of the main result relies on the set-valued issue of Mönch fixed point theorem incorporated with the Kuratowski measure of non-compactness.
Rocznik
Tom
Strony
5--20
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
Bibliografia
  • [1] M.I. Abbas and S. Hristova, Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique, AIMS Mathematics 6 (11) (2021) 12832–12844.
  • [2] M. Abu-Shady, Mohammed K. A. Kaabar, A Generalized definition of the fractional derivative with applications, Mathematical Problems in Engineering 2021, Article ID 9444803.
  • [3] M. Abu-Shady, M.K.A. Kaabar, A Novel computational tool for the fractional-order special functions arising from modeling scientific pPhenomena via Abu-Shady-Kaabar fractional derivative, Computational and Mathematical Methods in Medicine 2022, Article ID 2138775.
  • [4] B. Ahmad, A. Alsaedi, S.K. Ntouyas, H.H. Al-Sulami, On neutral functional differential inclusions involving Hadamard fractional derivatives, Mathematics 7 (11) (2019) 1–13, Article ID:1084.
  • [5] B. Alqahtani, S. Abbas, M. Benchohra, S.S. Alzaid, Fractional q-difference inclusions in Banach spaces, Mathematics 8 (91) (2020) 91, 1–12, DOI: 10.3390/math8010091.
  • [6] D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Advances in Dynamical Systems and Applications 10 (2) (2015) 109–137.
  • [7] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific: Singapore, 2012.
  • [8] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics 8 (3) (2020) 360, 1–13.
  • [9] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
  • [10] J. Banaś, T. Zając, On a measure of noncompactness in the space of regulated functions and its applications, Adv. Nonlinear Anal. 8 (2019) 1099–1110.
  • [11] M. Benchohra, J.R. Graef, N. Guerraiche, S. Hamani, Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line, AIMS Mathematics 6 (6) (2021) 6278–6292.
  • [12] M. Benchohra, S. Hamani, Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Meth. Nonlinear Anal. 32 (1) (2008) 115–130.
  • [13] M. Benchohra, N. Hamidi, J.J. Nieto, Existence of solutions to differential inclusions with fractional order and impulses, Electron. J. Qual. Theory Differ. Equ. 80 (2010) 1–18.
  • [14] M. Benchohra, J. Henderson, D. Seba, Boundary value problems for fractional differential inclusions in Banach space, Fract. Differ. Calc. 2 (1) (2012) 99–108.
  • [15] A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci. (2021) DOI:10.1007/s40096-020-00359-0.
  • [16] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
  • [17] K. Diethelm, A.D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoelasticity, in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, F. Keil, W. Mackens, H. Voss, and J. Werther, Eds., Springer-Verlag, Heidelberg, 1999, 217–224.
  • [18] J.R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. Univ. Babeș-Bolyai Math. 62 (4) (2017) 427–438.
  • [19] B. Hazarika, R. Arab, M. Mursaleen, Applications of measure of moncompactness and operator type contraction for existence of solution of functional integral equations, Complex Anal. Oper. Theo. (2019), doi:10.1007/s11785-019-00933-y.
  • [20] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983) 1351–1371.
  • [21] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [22] M. Houas, F. Martinez, M.E. Samei, M.K.A. Kaabar, Uniqueness and Ulam-Hyers-Rassias stability results for sequential fractional pantograph q- differential equations, Journal of Inequalities and Applications 2022 (1) (2022) 1–24.
  • [23] M.K.A. Kaabar, A. Refice, M.S. Souid, F. Martinez, S. Etemad, Z. Siri, S. Rezapour, Existence and UHR stability of solutions to the implicit nonlinear FBVP in the variable order settings, Mathematics 9 (14) (2022) 1693, 1–17.
  • [24] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, 2006.
  • [25] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965) 781–786.
  • [26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing Company: Singapore; Hackensack, NJ, USA, London, UK; Hong Kong, China, 2010.
  • [27] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, John-Wiley and Sons: New York, NY, USA, 1993.
  • [28] A. Nouara, A. Amara, E. Kaslik, S. Etemad, S. Rezapour, F. Martinez, M.K.A. Kaabar, A study on multiterm hybrid multi-order fractional boundary value problem coupled with its stability analysis of Ulam-Hyers type, Advances in Difference Equations 2021 (1) (2021) 1–28.
  • [29] N. Nyamoradi, D. Baleanu, R. Agarwal, On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval, Adv. Math. Phys. 2013 (2013), Article ID:823961.
  • [30] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [31] A. Salem, H.M. Alshehri, L. Almaghamsi, Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space, Adv. Difference Equa. 132 (2021), DOI:10.1186/s13662-021-03302-2.
  • [32] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Drivatives, Gordon and Breach Science Publishers, Longhorne, PA, 1993.
  • [33] H.M. Srivastava, K.M. Saad, Some new models of the time-fractional gas dynamics equation, Adv. Math. Models Appl. 3 (1) (2018) 5–17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-067cf134-db99-44f0-a522-feb975c895cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.