PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Przegląd zastosowania algorytmów uczenia maszynowego do oceny i monitorowania ryzyka zawodowego w czasie rzeczywistym

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Overview of the use of machine learning algorithms for real-time occupational risk assessment and monitoring
Języki publikacji
PL
Abstrakty
PL
Uczenie maszynowe (UM) to obszar sztucznej inteligencji dotyczący algorytmów, które mogą modyfikować swoje parametry na podstawie przetwarzanych danych i wykonywać zadania bez wyraźnych instrukcji. Rozwój systemów sztucznej inteligencji i technologii Internetu rzeczy (IoT) powoduje, że algorytmy UM są coraz częściej wykorzystywane w różnych sektorach gospodarki, w tym do oceny i monitorowania ryzyka zawodowego. Zawarty w artykule przegląd literatury naukowej z tej dziedziny pozwolił na wskazanie sektorów i rodzajów środowisk pracy, w których te algorytmy są stosowane, a także na określenie danych wykorzystywanych do uczenia algorytmów UM oraz identyfikację najczęściej stosowanych metod. Przedstawiono również potencjał algorytmów UM do automatyzacji procesów identyfikacji zagrożeń i oceny ryzyka zawodowego w czasie rzeczywistym.
EN
Machine learning (ML) is an area of artificial intelligence dealing with algorithms that can modify their parameters based on processed data and perform tasks without explicit instructions. The development of artificial intelligence systems and Internet of Things technologies is resulting in ML algorithms being increasingly used in various sectors of the economy, including occupational risk assessment and monitoring. This article provides a review of the scientific literature in this field, which has identified the sectors and types of work environments in which these algorithms are used, defined the data used to learn ML algorithms and identified the most commonly used methods. The potential of UM algorithms to automate hazard identification and occupational risk assessment processes in real time is also presented.
Rocznik
Tom
Strony
16--21
Opis fizyczny
Bibliogr 47 poz., rys., tab.
Twórcy
  • Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy, ul. Czerniakowska 16, 00-701 Warszawa, Polska
Bibliografia
  • [1] Maheronnaghsh S. et al., Machine learning in Occupational Safety and Health - a systematic review, „International Journal of Occupational and Environmental Safety”, 2023, 1: 14-32.
  • [2] PN-N-180022011. Systemy zarządzania bezpieczeństwem i higieną pracy. Ogólne wytyczne do oceny ryzyka zawodowego.
  • [3] Magoni M. et al. Novel Chemoresistive Sensors for Indoor CO2 Monitoring: Validation in an Operational Environment, „ACS Sensors”, 2024, 9(6): 2999-3008.
  • [4] Muraleedharan Jalajamony H.M., De S., Fernandez R.E., NFC-Enabled Batteryless AI-Integrated Sensing Network for Smart PPE System, „IEEE Sensors Journal”, 2024, 24(16): 26914-26925.
  • [5] Patton N.A., Novel Methods for Occupational and Non-Occupational Exposure Assessment for Improved Risk Assessment and Decision Making, Johns Hopkins University, Baltimore 2021.
  • [6] Li J., Ouyang Y., Luo X., Towards an EEG-Based Approach for Detecting Falls from Height Hazards Using Construction Workers’ Physiological Signals, Construction Research Congress, 2022.
  • [7] Khan M. et al., IMU based Smart Safety Hook for Fall Prevention at Construction Sites, IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, 2021, s. 1-6.
  • [8] Kou J. et al., Fall-risk assessment of aged workers using wearable inertial measurement units based on machine learning, „Safety Science”, 2024, 176: 1-14.
  • [9] O’Sullivan P. et al., AI-Based Task Classification With Pressure Insoles for Occupational Safety, „IEEE Access”, 2024, 12: 21347-21357.
  • [10] Cobb B.S., Candan F., Improving Workplace Safety in the Cargo Industry through Posture Monitoring using Mediapipe and Machine Learning, International Conference on Innovations in Intelligent Systems and Applications (INISTA), 2023, s. 1-6.
  • [11] Low J.X. et al., ActSen - AI-enabled Real-time IoT-based Ergonomic Risk Assessment System, IEEE International Congress on Internet of Things (ICIOT), 2019, s. 76-78.
  • [12] Thomas B. et al., Machine Learning for Detection and Risk Assessment of Lifting Action, „IEEE Transactions on Human-Machine Systems”, 2022, 52(6): 1196-1204.
  • [13] Massiris Fernández M., Ergonomic risk assessment based on computer vision and machine learning, „Computers & Industrial Engineering”, 2020, 149: 1-11.
  • [14] Conforti I. et al., Measuring Biomechanical Risk in Lifting Load Tasks through Wearable System and Machine-Learning Approach, „Sensors”, 2020, 20(6): 1-17.
  • [15] Hosseinian S.M. et al., Static and Dynamic Work Activity Classification from a Single Accelerometer: Implications for Ergonomic Assessment of Manual Handling Tasks, „IISE Transactions on Occupational Ergonomics and Human Factors”, 2019, 7: 59-68.
  • [16] Yu J. et al., Automatic Biomechanical Workload Estimation for Construction Workers by Computer Vision and Smart Insoles, „Journal of Computing in Civil Engineering”, 2019, 33(3): 1-28.
  • [17] Lee Y.-C., Lee C.-H., SEE: A proactive strategy-centric and deep learning-based ergonomic risk assessment system for risky posture recognition, „Advanced Engineering Informatics”, 2022, 53, 1-14.
  • [18] Hosseini N., Arjmand N., An artificial neural network for full-body posture prediction in dynamic lifting activities and effects of its prediction errors on model-estimated spinal loads, „Journal of Biomechanics”, 2024, 162: 2-11.
  • [19] Bustos D. et al., Machine Learning Approach to Model Physical Fatigue during Incremental Exercise among Firefighters, „Sensors”, 2023, 23(1): 1-13.
  • [20] Sadat-Mohammadi M. et al., Non-invasive physical demand assessment using wearable respiration sensor and random forest classifier, „Journal of Building Engineering”, 2024, 44: 1-10.
  • [21] Choi Y. et al., A machine learning-based forecasting model for personal maximum allowable exposure time under extremely hot environments, „Sustainable Cities and Society”, 2024, 101: 1-17.
  • [22] Khan M. et al., Developing Prediction Models for Monitoring Workers’ Fatigue in Hot Conditions, „Computing in Civil Engineering”, 2023, s. 623–630.
  • [23] Sowiński P. et al., Frugal Heart Rate Correction Method for Scalable Health and Safety Monitoring in Construction Sites, „Sensors”, 2023, 23(14): 6464.
  • [24] Shakerian S. et al., Assessing occupational risk of heat stress at construction: A worker-centric wearable sensor-based approach, „Safety Science”, 2021, 142: 1-13.
  • [25] Irumva T. et al., Agricultural Machinery Operator Monitoring System (Ag-OMS): A Machine Learning Approach for Real-Time Operator Safety Assessment, „Journal of Agricultural Safety and Health”, 2023, 29: 85-97.
  • [26] Bavaresco R. et al., An ontology-based framework for worker’s health reasoning enabled by machine learning, „Computers & Industrial Engineering”, 2024, 193: 1-16.
  • [27] Campero-Jurado I. et al., Smart Helmet 5.0 for Industrial Internet of Things Using Artificial Intelligence, „Sensors”, 2020, 20(21): 6241.
  • [28] Jeon J.H., Cai H. Classification of construction hazard related perceptions using: Wearable electroencephalogram and virtual reality, „Automation in Construction”, 2021, 132: 1-10.
  • [29] Wu H. et al., Identifying Unsafe Behavior of Construction Workers: A Dynamic Approach Combining Skeleton Information and Spatiotemporal Features, „Journal of Construction Engineering and Management”, 2023, 149(11): 1-32.
  • [30] Ciccarelli M. et al., Human work sustainability tool, „Journal of Manufacturing Systems”, 2022, 62(7):76–86.
  • [31] Bangani R.G., Menon V., Jovanov E., Personalized Stress Monitoring AI System for Healthcare Workers, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021, s. 2992–2997.
  • [32] Donati M. et al., ECG-Based Stress Detection and Productivity Factors Monitoring: The Real-Time Production Factory System, „Sensors”, 2023, 23(12): 5502.
  • [33] Aiello G. et al., Machine Learning approach towards real time assessment of hand-arm vibration risk, „IFAC- -PapersOnLine”, 2021, 54(1): 1187-1192.
  • [34] Aiello G. et al., Worker safety in agriculture 4.0: A new approach for mapping operator’s vibration risk through Machine Learning activity recognition, „Computers and Electronics in Agriculture”, 2022, 193: 1-10.
  • [35] Sigcha L. et al., Automatic Identification of Hand-Held Vibrating Tools through Commercial Smartwatches and Machine Learning, [w:] P. Arezes et al., Occupational and Environmental Safety and Health II. Studies in Systems, Decision and Control, vol. 277, Springer, 2020, s. 481-489.
  • [36] Pisu A. et al., Enhancing workplace safety: A flexible approach for personal protective equipment monitoring, „Expert Systems with Applications”, 2024, 238: 1-16.
  • [37] Yakubraj M. et al., Monitoring Industrial Protection Gear Using Intelligent System, 2nd International Conference on Networking and Communications (ICNWC), 2024, s. 1–6.
  • [38] Wang Z., Cai Z., Wu Y., An improved YOLOX approach for low-light and small object detection: PPE on tunnel construction sites, „Journal of Computational Design and Engineering”, 2023, 10: 1158-1175.
  • [39] Lee Y.-R., Deep learning-based framework for monitoring wearing personal protective equipment on construction sites, „Journal of Computational Design and Engineering”, 2023, 10(2): 1-13.
  • [40] Biswas S. et al., Real-Time Construction Safety Gear Detection Using YOLOv4 with Darknet, IEEE 17th International Conference on Application of Information and Communication Technologies (AICT), 2023, s. 1-6.
  • [41] Yu W. et al., Real-time Identification of Worker’s Personal Safety Equipment with Hybrid Machine Learning Techniques, „International Journal of Machine Learning and Computing”, 2022, 12(3): 79–84.
  • [42] Kamal R. et al., Construction Safety Surveillance Using Machine Learning, International Symposium on Networks, Computers and Communications (ISNCC), Montreal, Canada, 2020, s. 1–6.
  • [43] Yu W. et al., Automatic Safety Monitoring of Construction Hazard Working Zone: A Semantic Segmentation based Deep Learning Approach, Proceedings of the 7th International Conference on Automation and Logistics (ICAL), 2020, s. 54-59.
  • [44] Nath N.D. et al., Deep learning for site safety: Real-time detection of personal protective equipment, „Automation in Construction”, 2020, 112: 1-20.
  • [45] Al-Khiami M.I., Elhadad M.M., Enhancing Construction Site Safety Using AI: The Development of a Custom Yolov8 Model for PPE Compliance Detection, European Conference on Computing in Construction, Chania, Crete, Greece, 2024, s. 1-8.
  • [46] Alves D.N.A. et al., TinyPPE: Ensuring Workplace Safety Helmet Compliance with Tiny Machine Learning, XIV Brazilian Symposium on Computing Systems Engineering (SBESC), 2024, s. 1-6.
  • [47] Tercan H., Meisen T., Machine learning and deep learning based predictive quality in manufacturing: a systematic review, „Journal of Intelligent Manufacturing”, 2022, 33: 1879-1905.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef22c086-95b4-4ef3-968c-e4e04f494117
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.