PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tricyclic polyazine n-oxides as proposed energetic compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In designing proposed new explosives, we seek a balance between high detonation performance and low sensitivity. Accordingly we focus upon (1) planar molecules, for better packing efficiency and reduced shear strain upon impact/ shock, (2) high nitrogen content, for greater density and enthalpy of formation, (3) N→O linkages rather than NO2 or ONO2 groups as sources of oxygen, and (4) presence of NH2 groups, if possible, to increase density and diminish sensitivity. Here we report the results of a computational assessment of three tricyclic polyazine N-oxides that essentially satisfy these structural criteria. Their predicted crystal densities range from 1.96 to 2.03 g/cm3. The calculated solid phase enthalpies of formation are between 135 and 314 kcal/mol. The computed detonation velocities and detonation pressures are similar to HMX for two of the compounds and significantly greater for the third, exceeding even CL-20. Impact sensitivities were estimated on the basis of (1) the free space available in the respective crystal lattices, and (2) the molecular surface electrostatic potentials. All three compounds are expected to be less impact sensitive than both HMX and CL-20. One of the three in particular is suggested to represent the best balance between detonation performance and sensitivity.
Rocznik
Strony
305--323
Opis fizyczny
Bibliogr. 76 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, University of New Orleans New Orleans, LA 70148, USA
autor
autor
Bibliografia
  • [1] Kamlet M.J., Jacobs S.J., Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [2] Iyer S., Slagg N., Molecular Aspects in Energetic Materials, in: Structure and Reactivity, (Liebman J.F., Greenberg A., Eds.), VCH Publishers, New York, 1988, ch. 7.
  • [3] Dlott D.D., Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S, Eds.), Elsevier, Amsterdam, 2003, ch. 6, 125-191.
  • [4] Meyer R., Köhler J., Homburg A. Explosives, 6th ed., Wiley-VCH, Weinheim, Germany, 2007.
  • [5] Politzer, P., Murray, J.S., Some Perspectives on Estimating Detonation Properties of C,H,N,O Compounds, Cent. Eur. J. Energ. Mater., 2011, 8(3), 209-220.
  • [6] Shekhar, H., Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives, Cent. Eur. J. Energ. Mater., 2012, 9(1), 39-48.
  • [7] Akhavan J., The Chemistry of Explosives, 2nd ed., Royal Society of Chemistry, London, 2004.
  • [8] Licht H.-H., Ritter H., New Energetic Materials from Triazoles and Tetrazines, J. Energ. Mater., 1994, 12, 223-235.
  • [9] Chavez D.E., Hiskey M.A., Gilardi R.D., 3,3’-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material, Angew. Chem. Int. Ed., 2000, 39, 1791-1793.
  • [10] Pagoria P.F., Lee G.S., Mitchell A.R., Schmidt R.D., A Review of Energetic Materials Synthesis, Thermochim. Acta, 2002, 384, 187-204.
  • [11] Churakov A.M., Tartakovsky V.A., Progress in 1,2,3,4-Tetrazine Chemistry, Chem. Rev., 2004, 104, 2601-2616.
  • [12] Chavez D.E., Hiskey M.A., Naud D.L., Tetrazine Explosives, Propellants Explos. Pyrotech., 2004, 29, 209-215.
  • [13] Wei T., Zhu W., Zhang X., Li Y.-F., Xiao H., Molecular Design of 1,2,4,5-Tetrazine Based High-Energy Density Materials, J. Phys. Chem. A, 2009, 113, 9404-9412.
  • [14] Gökçinar E., Klapötke T.M., Bellamy A.J., Computational Study on 2,6-Diamino-3,5-dinitropyrazine and its 1-Oxide and 1,4-Dioxide Derivatives, J. Mol. Structure (Theochem), 2010, 953, 18-23.
  • [15] Politzer P., Lane P., Murray J.S., Computational Characterization of Two Di-1,2,3,4-tetrazine Tetraoxides, DTTO and iso-DTTO, as Potential Energetic Compounds, Cent. Eur. J. Energ. Mater., 2013, 10(1), 37-52.
  • [16] Politzer P., Lane P., Murray J.S., Computational Analysis of Relative Stabilities of Polyazine N-Oxides, Struct. Chem., 2013, DOI: 10.1007/s11224-013-0277-2.
  • [17] Stine J.R., Molecular Structure and Performance of High Explosives, in: Structure and Properties of Energetic Materials, (Lieberberg D.H., Armstrong R.W., Gilman J.J., Eds.), Materials Research Society, Pittsburgh, 1993, ch. 1.
  • [18] Murray J.S., Gilardi R., Grice,M.E., Lane P., Politzer P., Structures and Molecular Surface Electrostatic Potentials of High-Density C,N,H Systems, Struct. Chem., 1996, 7, 273-280.
  • [19] Benson F.R., The High Nitrogen Compounds, Wiley-Interscience, New York, 1984.
  • [20] Fabian J., Lewars E., Azabenzenes (Azines) – The Nitrogen Derivatives of Benzene with One to Six N Atoms: Stability, Homodesmotic Stabilization Energy, Electron Distribution, and Magnetic Ring Current; A Computational Study, Can. J. Chem., 2004, 82, 50-69.
  • [21] Wilson K.J., Perera S.A., Bartlett R.J., Watts J.D., Stabilization of the Pseudo-Benzene N6 Ring with Oxygen, J. Phys. Chem. A, 2001, 105, 7693-7699.
  • [22] Mandado M., Otero N., Mosquera R.A., Local Aromaticity Study of Heterocycles Using n-Center Delocalization Indices: The Role of Aromaticity on the Relative Stability of Position Isomers, Tetrahedron, 2006, 62, 12204-12210.
  • [23] Li J., Huang Y., Dong H., A Theoretical Study of Polynitropyridines and Their N-Oxides, J. Energ. Mater., 2005, 23, 133-149.
  • [24] Lias S.G., Bartmess J.E., Liebman J.L., Levin R.D., Mallard W.G., Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 1.
  • [25] Brill T.B., James K., Kinetics and Mechanism of Thermal Decomposition of Nitroaromatic Explosives, Chem. Rev., 1993, 93, 2667-2692.
  • [26] Politzer P., Murray J.S., Sensitivity Correlations, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, ch. 1.
  • [27] Zeman S., Sensitivities of High Energy Compounds, Struct. Bond., 2007, 125, 195-271.
  • [28] Murray J.S., Concha M.C., Politzer P., Links Between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C-NO2/N-NO2 Bond Dissociation Energies, Mol. Phys., 2009, 107, 89-97.
  • [29] Politzer P., Murray J.S., Some Perspectives on Sensitivity to Initiation of Detonation, in: Green Energetic Materials, (Brinck, T., Ed.), Wiley, Chichester, UK, 2013.
  • [30] Tsai D.H., Armstrong R.W., Defect-Enhanced Structural Relaxation Mechanism for the Evolution of Hot Spots in Rapidly Compressed Crystals, J. Phys. Chem., 1994, 98, 10997-11000.
  • [31] Kunz A.B., An Ab Initio Investigation of Crystalline PETN, Mater. Res. Soc. Symp. Proc., 1996, 418, 287-292.
  • [32] Rice B.M., Mattson W., Trevino S.F., Molecular-dynamics Investigation of the Desensitization of Detonable Material, Phys. Rev. E, 1998, 57, 5106-5111.
  • [33] Tarver C.M., Urtiew P.A., Tran T.D., Sensitivity of 2,6-Diamino-3,5-dinitropyrazine-1-oxide, J. Energ. Mater., 2005, 23, 183-203.
  • [34] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., Sensitivity and the Available Free Space per Molecule in the Unit Cell, J. Mol. Model., 2011, 17, 2569-2574.
  • [35] Zhang C., Stress-Induced Activation of Decomposition of Organic Explosives: A Simple Way to Understand, J. Mol. Model., 2013, 19, 477-483.
  • [36] Kuklja M.M., Rashkeev S.N., Shear-Strain-Induced Chemical Reactivity of Layered Molecular Crystals, Appl. Phys. Lett., 2007, 90, 151913(1-3).
  • [37] Veauthier J.M., Chavez D.E., Tappan B.C., Parrish D.A., Synthesis and Characterization of Furazan Energetics ADAAF and DOATF, J. Energ. Mater., 2010, 28, 229-249.
  • [38] Agrawal J.P., Past, Present and Future of Thermally-Stable Explosives, Cent. Eur. J. Energ. Mater., 2012, 9(3), 273-290.
  • [39] Tarver C.M., Chidester S.K., Nichols III, A.L., Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives, J. Phys. Chem., 1996, 100, 5794-5799.
  • [40] Zheng W., Wong N.-B., Wang W., Zhou G., Tian A., Theoretical Study of 1,3,4,6,7,9,9b-Heptaazaphenalene and its Ten Derivatives, J. Phys. Chem. A, 2004, 108, 97-106.
  • [41] Zheng W., Wong N.-B., Li W.-K., Tian A., Tri-s-triazine and Its Nitrogen Isoelectronic Equivalents: An Ab Initio Study, J. Phys. Chem. A, 2004, 108, 11721-11727.
  • [42] Farquhar D., Leaver D., Synthesis of Pyrido[2,1,6-de]quinolizine(cycl[3.3.3]azine), Chem. Commun., 1969, 24-25.
  • [43] Farquhar D., Gough T.T., Leaver D., Heterocyclic Compounds with Bridgehead Nitrogen Atoms. Part V. Pyrido[2,1,6-de]quinolizines(cycl[3.3.3]azines), J. Chem. Soc., Perkins Trans. 1, 1976, 341-355.
  • [44] Shahbaz M., Urano S., LeBreton P.R., Rossman M.A., Hosmane R.S., Leonard N.J., Tri-s-triazine: Synthesis, Chemical Behavior, and Spectroscopic and Theoretical Probes of Valence Orbital Structure, J. Am. Chem. Soc. 1984, 106, 2805-2811.
  • [45] Jürgens B., Irran E., Senker J.; Kroll P., Müller H., Schnick W., Melem (2,5,8-Triamino-tri-s-triazine), An Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-Ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, J. Am. Chem. Soc., 2003, 125, 10288-10300.
  • [46] Pauling L., Sturdivant J.H., The Structure of Cyameluric Acid, Hydromelonic Acid, and Related Substances, Proc. Natl. Acad. Sci. USA, 1937, 23, 615.
  • [47] Wilson E.K., A Prized Collection: Pauling Memorabilia, Chem. Eng. News, 2000, 78(32), 62-63.
  • [48] paulingblog.wordpress.com
  • [49] Hosmane R.S., Rossman M.A., Leonard N.J., Synthesis and Structure of Tri-striazine, J. Am. Chem. Soc., 1982, 104, 5497-5499.
  • [50] Rice B.M., Hare J.J., Byrd E.F.C., Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes, J. Phys. Chem. A, 2007, 111, 10874-10879.
  • [51] Lai W.-P., Lian P., Yu T., Chang H.-B., Xue Y.-Q., Design and Density Functional Theoretical Study of Three Novel Pyrazine-Based High-Energy Density Compounds, Comput. Theor. Chem., 2011, 963, 221-226.
  • [52] Politzer P., Martínez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Predictions, Mol. Phys., 2009, 107, 2095-2101.
  • [53] Politzer P., Murray J.S., Statistical Analysis of the Molecular Surface Electrostatic Potential: An Approach to Describing Noncovalent Interactions in Condensed Phases, J. Mol. Struct. (Theochem), 1998, 425, 107-114.
  • [54] Qiu L., Xiao H., Gong X., Ju X., Zhu W., Crystal Density Predictions for Nitramines Based on Quantum Chemistry, J. Hazard. Mater., 2007, 141, 280-288.
  • [55] Eckhardt C.J., Gavezzotti A., Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials, J. Phys. Chem. B, 2007, 111, 3430-3437.
  • [56] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, Boca Raton, FL, 1998.
  • [57] Habibollahzadeh D., Grice M.E., Concha M.C., Murray J.S., Politzer P., Nonlocal Density Functional Calculation of Gas Phase Heats of Formation, J. Comput. Chem., 1995, 16, 654-658.
  • [58] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013; erratum: 2009, 113, 5813.
  • [59] Politzer P., Murray J.S., Grice M.E., DeSalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [60] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater., 2001, A84, 1-26.
  • [61] Huynh M.-H. V., Hiskey M.A., Hartline E.L., Montoya D.P., Gilardi R., Polyazide High-Nitrogen Compounds: Hydrazo- and Azo-1,3,5-triazine, Angew. Chem. Int. Ed., 2004, 43, 4924-4928.
  • [62] Luo Y.-R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, 2007.
  • [63] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [64] Zeman S., Krupka M., New Aspects of Impact Reactivity of Polynitro Compounds, Part III. Impact Sensitivity as a Function of the Intermolecular Interactions, Propellants Explos. Pyrotech., 2003, 28, 301-307.
  • [65] Chen H., Li L., Jin S., Chen S., Jiao Q., Effects of Additives on ε-HNIW Crystal Morphology and Impact Sensitivity, Propellants Explos. Pyrotech., 2012, 37, 77- 82.
  • [66] Stewart R.F., On the Mapping of Electrostatic Properties from Bragg Diffraction Data, Chem. Phys. Lett., 1979, 65, 335-342.
  • [67] Politzer P., Truhlar D.G., Eds., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press: New York, 1981.
  • [68] Politzer P., Murray J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules, Theor. Chem. Acc., 2002, 108, 134-142.
  • [69] Murray J.S., Politzer P., The Electrostatic Potential: an Overview, WIREs Comp. Mol. Sci., 2011, 1, 153-163.
  • [70] Murray J.S., Lane P., Politzer P., Effects of Strongly Electron-attracting Components in Molecular Surface Electrostatic Potentials; Application to Predicting Impact Sensitivities of Energetic Molecules, Mol. Phys., 1998, 93, 187-194.
  • [71] Murray J.S., Lane P., Politzer P., Relationships between Impact Sensitivities and Molecular Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules, Mol. Phys., 1995, 85, 1-8.
  • [72] Hammerl A., Klapötke T.M., Nöth H., Warchhold M., Synthesis, Structure, Molecular Orbital and Valence Bond Calculations for Tetrazole Azide, CHN7, Propellants Explos. Pyrotech., 2003, 28, 165-173.
  • [73] Hammerl A., Klapötke T.M., Mayer P., Weigand J.J., Synthesis, Structure, Molecular Orbital Calculations and Decomposition Mechanism for Tetrazolylazide CHN7, its Phenyl Derivative PhCN7 and Tetrazolylpentazole CHN9, Propellants Explos. Pyrotech., 2005, 30, 17-26.
  • [74] Klapötke T.M., Nordheiter A., Stierstorfer J., Synthesis and Reactivity of an Unexpected Highly Sensitive 1-Carboxymethyl-3-diazonio-5-nitrimino-1,2,4-triazole, New J. Chem., 2012, 36, 1463-1468.
  • [75] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [76] Snerling O., Nielsen C.J., Nygaard L., Pedersen E.J., Sorensen G.O., Microwave Spectra of [13C] and [15N] Pyridine N-oxides and a Preliminary Ring Structure, J. Mol. Struct., 1975, 27, 205-211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c25607c2-ffbc-4224-925e-a7975abc3856
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.