Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analytical dependencies for estimating the uncertainty of the volume of gas lost through damage to the gas pipeline infrastructure are developed in this article. The stage of pseudo-stationary gas leakage is considered and equations for estimating the uncertainty of the gas pressure and temperature at the damage point of the gas pipeline are presented. They are based on the solution of the mathematical model of stationary gas movement in the gas pipeline. An equation for the uncertainty of the gas flow rate through the holes in the damaged gas pipeline is obtained based on the analysis of the gas flow equation as a functional dependence on the gas parameters and characteristics of the leakage. An uncertainty budget is formed for gas pressure and temperature at the damage point and gas flow rate through the damage holes. Formulas for the impact coefficients of the uncertainties of the input parameters on the combined standard uncertainty of these parameters are also developed. An example of the application of the developed equations for estimating the uncertainty of the gas volume lost through damage to the gas transportation network is presented
Czasopismo
Rocznik
Tom
Strony
9--18
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
- Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandery St., 12, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandery St., 12, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandery St., 12, Lviv, Ukraine
Bibliografia
- [1] Non-CO2 Greenhouse Gas Emission Projections & Mitigation. United States Environmental Protection Agency. https://www.epa.gov/global-mitigation-non -CO2-greenhouse-gases.
- [2] Jacob D. J., et al. (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., 22(14), 9617–9646. https://acp.copernicus.org/articles/22/9617/2022.
- [3] Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections), JCGM 100:2008, Joint Committee for Guides in Metrology, 2008.
- [4] Measurement of fluid flow – Procedures for the evaluation of uncertainties, ISO 5168:2005.
- [5] Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements, ISO 5167.1:2022.
- [6] Golijanek-Jędrzejczyk A., et al. (2020). Uncertainty of mass flow measurement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement, 160, 1-9. https://doi.org/10.1016/j.measurement.2020.107851.
- [7] Dong J., et al. (2018). Study on the measurement accuracy of an improved cemented carbide orifice flowmeter In natural gas pipeline. Flow Measurement and Instrumentation, 59, 52-62. https://doi.org/10.1016/j.flowmeasinst.2017.12.008.
- [8] Bekraoui A., et al. (2019). Uncertainty study of fiscal orifice meter used in a gas Algerian field. Flow Measurement and Instrumentation, 66, 200-208. https://doi.org/10.1016/j.flowmeasinst.2019.01.020.
- [9] Golijanek-Jędrzejczyk A., et al. (2018). Uncertainty of the liquid mass flow measurement using the orifice plate. Flow Measurement and Instrumentation, 62, 84-92. https://doi.org/10.1016/j.flowmeasinst.2018.05.012.
- [10] Matiko F., et al. (2024). Determination of natural gas losses based on incomplete information about damaged pipeline. Lecture Notes in Civil Engineering, 604, 4th International scientific conference "EcoComfort and current issues of civil engineering", 360–374. http://dx.doi.org/10.1007/978-3-031-67576-8_32.
- [11] Obibuike U.J., et al. (2020) Mathematical Approach to Determination of the Pressure at the Point of Leak in Natural Gas Pipeline. International Journal of Oil, Gas and Coal Engineering, 8(1), 22-27. https://doi.org/10.11648/j.ogce.20200801.14.
- [12] Kwestarz M. A., Osiadacz A. J., Kotyński Ł. (2019). Method for leak detection and location for gas networks. Archives of Mining Sciences, 64(1), 131–150. https://doi.org/10.24425/ams.2019.126276.
- [13] Kostowski W. J., Skorek J. (2012). Real gas flow simulation in damaged distribution pipelines. Energy, 45(1), 481–488. https://doi.org/10.1016/j.energy.2012.02.076.
- [14] Natural gas - Calculation of compression factor. Part 2: Calculation using molar-composition analysis, ISO 12213-2:2006.
- [15] Natural gas - Calculation of compression factor. Part 3: Calculation using physical properties, ISO 12213-3:2006.
- [16] Domestic gas meters. Method for converting the measured volume of natural gas to standard conditions, DSTU 9231:2023, SE «UkrNDNTS», Kyiv, Ukraine, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b128db15-9bf6-4963-9f53-33402fe1b28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.