PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie kruszyw odzyskanych ze zniszczonej nawierzchni asfaltowej w betonowych nawierzchniach drogowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
A study on the use of reclaimed asphalt pavement aggregates in pavement quality concrete
Języki publikacji
PL EN
Abstrakty
PL
W celu rozwiązania problemu z brakiem naturalnych kruszyw zaproponowano stosowanie kruszyw odzyskanych ze zniszczonych nawierzchni asfaltowych. W przypadku ich właściwej obróbki składają się one z dobrej jakości kruszywa, jednak pokrytego warstewką asfaltu. W doświadczeniach naturalne kruszywa zastępowano częściowo tym odzyskanym kruszywem. Badania właściwości uzyskanych betonów wykazały, że zastąpienie naturalnego kruszywa w ilości przekraczającej 20% powodują znaczne zmniejszenie wytrzymałości na ściskanie. Natomiast zastępowanie nie przekraczające tego poziomu zapewniało jakość betonu utrzymującą się w poprawnych granicach dla betonu klasy 40 MPa. Także wytrzymałość na zginanie betonu zawierającego 20% kruszywa odzyskanego z nawierzchni asfaltowej była większa od 4,5 MPa. Uzyskane wyniki pokazują, że zawartość odzyskanego kruszywa w betonie nie przekraczająca 20% nie ma niekorzystnego wpływu na właściwości uzyskanych betonów.
EN
To overcome the deficit of natural aggregates, alternate materials are being proposed. As an alternative to natural aggregates, reclaimed asphalt pavement (RAP) aggregates in the present study was used. When processed properly, RAP consists of well-graded, high quality aggregates, coated by a layer of asphalt. In the current study natural aggregates were partially replaced by RAP aggregates. These specimens were tested for the mechanical properties. A substantial loss in the compressive strength of RAP based concrete was observed when more than 20% of RAP aggregates were used. For 20% replacement of RAP aggregate, the compressive strength was within the acceptable limits for producing a 40 MPa concrete. Also the flexural strength of 20% RAP concrete was higher than 4.5 MPa and also, 20% had higher flexural toughness compared to the control mix, without RAP. These results suggest that as much of 20% of RAP aggregates can be used for PQC without any significant impact on the properties of the concrete produced.
Czasopismo
Rocznik
Strony
421--431
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
  • Department of Civil Engineering, National Institute of Technology, Warangal, India
autor
  • Department of Civil Engineering, National Institute of Technology, Warangal, India
  • Department of Civil Engineering, National Institute of Technology, Warangal, India
Bibliografia
  • 1. Rahal, K. “Mechanical properties of concrete with recycled coarse aggregate”. Building and environment, 42(1), 407-415 (2007).
  • 2. Bolden, J., Abu-Lebdeh, T., & Fini, E. “Utilization of recycled and waste materials in various construction applications”. American Journal of Environmental Science, 9(1), 14-24 (2013).
  • 3. Huang, B., Shu, X., & Burdette, E. G. “Mechanical properties of concrete containing recycled asphalt pavements”. Magazine of Concrete Research, 58(5), 313-320 (2006).
  • 4. Collins, R. J., & Ciesielski, S. K. “Recycling and use of waste materials and by-products in highway construction” NCHRP Synthesis of Highway Practice, No. 199, Transportation Research Board 1994.
  • 5. Taha, R., Al-Harthy, A., Al-Shamsi, K., & Al-Zubeidi, M. Cement stabilization of reclaimed asphalt pavement aggregate for road bases and subbases. Journal of Materials in Civil Engineering, 14(3), 239-245 (2002).
  • 6. Singh, S., Ransinchung, G. D. R. N., & Kumar, P. “Feasibility study of RAP aggregates in cement concrete pavements” Road Materials and Pavement Design, 1-20. (2017)
  • 7. Delwar, M., Fahmy, M., & Taha, R. “Use of reclaimed asphalt pavement as an aggregate in Portland cement concrete.” Materials Journal, 94(3), 251-256. (1997)
  • 8. Hassan, K. E., Brooks, J. J., & Erdman, M. “The use of reclaimed asphalt pavement (RAP) aggregates in concrete”. Waste management series (Vol. 1, pp. 121-128). Elsevier (2000).
  • 9. Huang, B., Shu, X., & Li, G. “Laboratory investigation of Portland cement concrete containing recycled asphalt pavements”. Cement and Concrete Research, 35(10), 2008-2013 (2005).
  • 10. Al-Oraimi, S., Hassan, H. F., & Hago, A. “Recycling of reclaimed asphalt pavement in Portland cement concrete”. The Journal of Engineering Research (TJER), 6(1), 37-45 (2009).
  • 11. Debieb, F., Courard, L., Kenai, S., & Degeimbre, R. “Mechanical and durability properties of concrete using contaminated recycled aggregates”. Cement and Concrete Composites, 32(6), 421-426 (2010).
  • 12. Okafor, F. O. “Performance of recycled asphalt pavement as coarse aggregate in concrete”. Leonardo Electronic Journal of Practices and Technologies, 17, 47-58 (2010).
  • 13. Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155-163 (2013).
  • 14. Ibrahim, A., Mahmoud, E., Khodair, Y., & Patibandla, V. C. “Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating recycled asphalt pavements”. Journal of Materials in Civil Engineering, 26(4), 668-675 (2013).
  • 15. Modarres, A., & Hosseini, Z. “Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material”. Materials & Design, 64, 227-236 (2014).
  • 16. Settari, C., Debieb, F., Kadri, E. H., Boukendakdji, O. “Assessing the effects of recycled asphalt pavement materials on the performance of roller compacted concrete”. Construction and Building Materials, 101, 617-621 (2015).
  • 17. Brand, A. S. and Roesler, J. R. Expansive and concrete properties of SFS–FRAP aggregates. Journal of Materials in Civil Engineering, 28(2), 04015126 (2015).
  • 18. Berry, M., Kappes, B., & Kappes, L. “Optimization of Concrete Mixtures Containing Reclaimed Asphalt Pavement”. ACI Materials Journal, 112(6) (2015).
  • 19. Brand, A. S. and Roesler, J. R. “Ternary Concrete with Fractionated Reclaimed Asphalt Pavement”. ACI Materials Journal, 112(1) (2015).
  • 20. Khodair, Y. and Raza, M. Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Construction and Building Materials, 131, 245-253 (2017).
  • 21. Al-Mufti, R. L. and Fried, A. N. “Improving the strength properties of recycled asphalt aggregate concrete”. Construction and Building Materials, 149, 45-52 (2017).
  • 22. Singh, S., Ransinchung, G. D., & Kumar, P. “Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete”. Construction and Building Materials, 156, 19-27 (2017).
  • 23. Singh, S., Ransinchung, G. D., & Kumar, P. An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734-747 (2017).
  • 24. Hossiney, N., Wang, G., Tia, M., & Bergin, M. Evaluation of Concrete Containing Recycled Asphalt Pavement for Use in Concrete Pavement (No. 08-2711) (2008).
  • 25. Hossiney, N., Tia, M., & Bergin, M. J. “Concrete containing RAP for use in concrete pavement”. International Journal of Pavement Research and Technology, 3(5), 251-258 (2010).
  • 26. Tia, M., Hossiney, N., Su, Y. M., Chen, Y., & Do, T. A. “Use of reclaimed asphalt pavement in concrete pavement slabs”. Tallahassee, FL, 321 (2012).
  • 27. “Ordinary Portland cement 53 grade – Specification”. IS 12269:2013. Bureau of Indian Standards, New Delhi (2013).
  • 28. “Specification for coarse and fine aggregates from natural sources for concrete”. IS: 383-2016. Bureau of Indian Standards, New Delhi (2016)
  • 29. “Methods of Test for Aggregates for Concrete”. IS 2386:1963 – Reaffirmed 2002. Bureau of Indian Standards, New Delhi (2002)
  • 30. “Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures”. ASTM D2172/D2172M-17 ASTM International. (2017).
  • 31. Chesner, W.H., Collins, R.J. and MacKay, M.H., “User guidelines for waste and by-product materials in pavement construction” No. FHWA-RD-97-148 (1998).
  • 32. “Proportioning-Guideline, Indian Standard Concrete Mix”. IS 10262:2009. Bureau of Indian Standards, New Delhi (2009).
  • 33. “MORTH Specifications for Road and Bridge Works, 5th revision” Indian Roads Congress (IRC), Ministry of Road Transport & Highways (MORTH) (2013)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81838a20-d908-4f01-aefc-c014bac954b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.