PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of a New Random Copolymer Based on Glycidyl Nitrate and Tetrahydrofuran : A Thermal, Kinetic, and Theoretical Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, polymeric binders are regarded as playing a crucial role in solid propellants. Therefore, research aimed at improving the performance of the binder is particularly important. In this study, a new energetic random copolymer of glycidyl nitrate (GN) and tetrahydrofuran (THF), poly (THF-ran-GN) (Mn = 1561 g mol⁻¹) was synthesized using the cationic ring-opening polymerization process. The chemical structure of the prepared copolymers was characterized utilizing FT-IR, ¹H NMR and ¹³C NMR spectroscopic techniques. The thermal properties of the copolymers and their molecular weights were investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). The results showed that the glass transition temperatures (Tg) of the synthesized copolymers (Tg= -59 °C) were lower than those of pure PGN (Tg= -32 °C). Therefore, copolymerization led to a decrease in the Tg temperature. The kinetic parameters of the DSC were determined in the non-isothermal framework described by Kissinger. The electronic structure of the copolymers was also simulated with the Gaussian 09 program package in order to investigate the optoelectronic properties of the copolymers based on time dependent density functional theory (TD-DFT) computations. In addition, the existence of three peaks featuring significant excitations associated with electron transition in frontier orbitals was demonstrated. The results showed that the new synthesized random copolymer has energetic properties.
Rocznik
Strony
5--21
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
Bibliografia
  • [1] Ashish, J.; Swaroop, G.; Balasubramanian, K. Effect of Ammonium Perchlorate Particle Size on Flow, Ballistic, and Mechanical Properties of Composite Propellant. In: Nanomaterials in Rocket Propulsion Systems. (Yan, Q.; He, G.; Liu, P.; Gozin, M.; Eds.) Elsevier Inc., Chapter 8, pp. 299-362, 2019; ISBN 978-0-12-813908-0.
  • [2] Babuk, V.A.; Vassiliev, V.A.; Sviridov, V.V. Propellant Formulation Factors and Metal Agglomeration in Combustion of Aluminized Solid Rocket Propellant. Combust. Sci. Technol. 2001, 163(1): 261-289; https://doi.org/10.1080/00102200108952159.
  • [3] Oommen, C.; Jain, S.R. Ammonium Nitrate: A Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67(3): 253-81; https://doi.org/10.1016/S0304-3894(99)00039-4.
  • [4] Chaturvedi, S.; Dave, P.N. Solid Propellants: AP/HTPB Composite Propellants. Arabian J. Chem. 2019, 12(8): 2061-2068; https://doi.org/10.1016/j.arabjc.2014.12.033.
  • [5] Cohen, N.S.; Fleming, R.W.; Derr, R.L. Role of Binders in Solid Propellant Combustion. AIAA J. 1974, 12(2): 212-218; https://doi.org/10.2514/3.49195.
  • [6] Yadav, N.; Srivastava, P.K.; Varma, M. Recent Advances in Catalytic Combustion of AP-based Composite Solid Propellants. Def. Technol. 2021, 17(3): 1013-1031; https://doi.org/10.1016/j.dt.2020.06.007.
  • [7] Ghoroghchian, F.; Bayat, Y.; Abrishami, F. Study on the Thermal Stability and Decomposition Kinetics of Polypropylene Glycol–Glycidyl Azide Polymer–Polypropylene Glycol (PPG-GAP-PPG) as a Novel Triblock Copolymer Binder. Cent. Eur. J. Energ. Mater. 2020, 17(2): 251-289; http://dx.doi.org/10.22211/cejem/124073.
  • [8] Schock, M.; Bräse, S. Reactive & Efficient: Organic Azides as Cross-linkers in Material Sciences. Molecules 2020, 25(4): paper 1009; https://doi.org/10.3390/molecules25041009.
  • [9] Khanlari, T.; Bayat, Y.; Bayat, M. Synthesis, Thermal Stability and Kinetic Decomposition of Triblock Copolymer Polypropylene Glycol – poly Glycidyl Nitrate – Polypropylene Glycol (PPG–PGN–PPG). Polym. Bull. 2020, 77: 5859-5878; https://doi.org/10.1007/s00289-019-03051-z.
  • [10] O’Sullivan, O.T.; Zdilla, M.J. Properties and Promise of Catenated Nitrogen Systems as High-Energy-Density Materials. Chem. Rev. 2020, 120(12): 5682-5744. https://doi.org/10.1021/acs.chemrev.9b00804.
  • [11] Zhou, S.; Tang, G.; Pang, A.; Guo, X.; Wu, F.; Song, H.; Xu, X.; Hu, X.; Wang, Y. Synthesis of an Alkynyl Neutral Polymer-bonding Agent and Its Enhancing Effect on Tensile Strength of Glycidyl Azide Polymer-based Propellants. Iran. Polym. J. 2019, 28(11): 943-955; https://doi.org/10.1007/s13726-019-00756-w.
  • [12] Nayak, R.; Padhye, R.; Sinnappoo, K.; Arnold, L.; Behera, B.K. Airbags. Text. Prog. 2013, 45(4): 209-301; https://doi.org/10.1080/00405167.2013.859435.
  • [13] Sun Min, B. Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and Its Propellants. Propellants Explos. Pyrotech. 2008, 33(2): 131-138; https://doi.org/10.1002/prep.200700241.
  • [14] Yuan, H.; Huang, J.Q.; Peng, H.J.; Titirici, M.M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A Review of Functional Binders in Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8(31): paper 1802107; https://doi.org/10.1002/aenm.201802107.
  • [15] Cheng, T. Review of Novel Energetic Polymers and Binders–high Energy Propellant Ingredients for the New Space Race. Des. Monomers Polym. 2019, 22(1): 54-65. https://doi.org/10.1080/15685551.2019.1575652.
  • [16] Mohan, Y.M.; Mani, Y.; Raju, K.M. Synthesis of Azido Polymers as Potential Energetic Propellant Binders. Des. Monomers Polym. 2006, 9(3): 201-236; https://doi.org/10.1163/156855506777351045.
  • [17] Badgujar, D.M.; Talawar, M.B.; Zarko, V.E.; Mahulikar, P.P. New Directions in the Area of Modern Energetic Polymers: An Overview. Combust. Explos. Shock Waves 2017, 53: 371-387. https://doi.org/10.1134/S0010508217040013.
  • [18] Shee, S.K.; Reddy, S.T.; Athar, J.; Sikder, A.K.; Talawar, M.B.; Banerjee, S.; Khan, M.A. Probing the Compatibility of Energetic Binder poly-Glycidyl Nitrate with Energetic Plasticizers: Thermal, Rheological and DFT Studies. RSC Adv. 2015, 5(123): 101297-101308. https://doi.org/10.1039/C5RA16476A.
  • [19] Talawar, M.B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A.K.; Gandhe, B.R.; Rao, A.S. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). J. Hazard. Mater. 2009, 161(2-3): 589-607; https://doi.org/10.1016/j.jhazmat.2008.04.011.
  • [20] Abrishami, F.; Zohari, N.; Zeynali, V. Synthesis and Kinetic Study on the Thermal Degradation of Triblock Copolymer of Polycaprolactone ‒ poly (Glycidyl Nitrate) ‒ Polycaprolactone (PCL‐PGN‐PCL) as an Energetic Binder. Polym. Adv. Technol. 2019, 30(3): 640-647; https://doi.org/10.1002/pat.4500.
  • [21] Khanlari, T.; Bayat, Y.; Bayat, M.; Sheibani, N. Synthesis, Characterization, and Curing of Propylene Oxide and Glycidyl Nitrate Random Copolymer (GN-ran-PO) and Investigation of Its Compatibility with Different Energetic Plasticizers. J. Mol. Struct. 2021, 1231: paper 130008; https://doi.org/10.1016/j.molstruc.2021.130008.
  • [22] Ghorbani, M.; Bayat, Y.; Mossahebi Mohammadi, M.; Jafari, S. Synthesis and Characterization of PGN–PTHF–PGN as a New Triblock Copolymer. Proc. 11th Int. Sem. on Polymer Science and Technology, 2014; https://www. civilica. com/Paper-ISPST11-ISPST11_272.html.
  • [23] Khanlari, T.; Bayat, Y.; Bayat, M. Optimization of Factors Affecting the Synthesis of Polypropylene Glycol/Polyglycidyl Nitrate/Polypropylene Glycol Triblock Copolymer and Evaluation of Its Thermal Properties. (in Persian) Iran. J. Polym. Sci. Technol. 2020, 33(1): 63-73.
  • [24] Peng, W.; Ranganathan, R.; Keblinski, P.; Akcora, P.; Ozisik, R. Viscoelastic and Dynamic Properties of Polymer Grafted Nanocomposites with High Glass Transition Temperature Graft Chains. J. Appl. Phys. 2019, 126(19): paper 195102; https://doi.org/10.1063/1.5119694.
  • [25] Kim, B.; Chae, C.G.; Satoh, Y.; Isono, T.; Ahn, M.K.; Min, C.M.; Hong, J.H.; Ramirez, C.F.; Satoh, T.; Lee, J.S. Synthesis of Hard–Soft–Hard Triblock Copolymers, Poly (2-Naphthyl Glycidyl Ether)-block-poly [2-(2-(2-Methoxyethoxy) Ethoxy) Ethyl Glycidyl Ether]-block-poly (2-Naphthyl Glycidyl Ether), for Solid Electrolytes. Macromol. 2018, 51(6): 2293-2301; https://doi.org/10.1021/acs.macromol.7b02553.
  • [26] Kohga, M.; Okamoto, K. Thermal Decomposition Behaviors and Burning Characteristics of Ammonium Nitrate/Polytetrahydrofuran/Glycerin Composite Propellant. Combust. Flame 2011, 158(3): 573-582; https://doi.org/10.1016/j.combustflame.2010.10.009.
  • [27] Wang, Q.; Wang, L.; Zhang, X.; Mi, Z. Thermal Stability and Kinetic of Decomposition of Nitrated HTPB. J. Hazard. Mater. 2009, 172(2-3): 1659-1664; https://doi.org/10.1016/j.jhazmat.2009.08.040.
  • [28] Hassan, M.A.; Shehata, A.B. Studies on Some Acrylamido Polymers and Copolymer as Stabilizers for Nitrocellulose. J. Appl. Polym. Sci. 2002, 85(14): 2808-2819; https://doi.org/10.1002/app.10834.
  • [29] Martin, J.L.; Cadenato, A.; Salla, J.M. Comparative Studies on the non-Isothermal DSC Curing Kinetics of an Unsaturated Polyester Resin Using Free Radicals and Empirical Models. Thermochim. Acta 1997, 306(1-2): 115-126; https://doi.org/10.1016/S0040-6031(97)00311-0.
  • [30] Coleone, A.P.; Lascane, L.G.; Batagin-Neto, A. Polypyrrole Derivatives for Optoelectronic Applications: A DFT Study on the Influence of Side Groups. Phys. Chem. Chem. Phys. 2019, 21(32): 17729-17739; https://doi.org/10.1039/C9CP02638J.
  • [31] Botiz, I.; Stingelin, N. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Mater. 2014, 7(3): 2273-2300; https://doi.org/10.3390/ma7032273.
  • [32] Sivalingam, G.; De, P.; Karthik, R.; Madras, G. Thermal Degradation Kinetics of Vinyl Polyperoxide Copolymers. Polym. Degrad. Stab. 2004, 84(1): 173-179; https://doi.org/10.1016/j.polymdegradstab.2003.10.008.
  • [33] Tuffi, R.; D’Abramo, S.; Cafiero, L.M.; Trinca, E.; Ciprioti, S.V. Thermal Behavior and Pyrolytic Degradation Kinetics of Polymeric Mixtures from Waste Packaging Plastics. eXPRESS Polym. Lett. 2018, 12(1): 82-99; https://doi.org/10.3144/expresspolymlett.2018.7.
  • [34] Ries, A.; Canedo, E.L.; Souto, C.R.; Wellen, R.M. Non-Isothermal Cold Crystallization Kinetics of poly (3-Hydoxybutyrate) Filled with Zinc Oxide. Thermochim. Acta 2016, 637: 74-81; https://doi.org/10.1016/j.tca.2016.06.002.
  • [35] Alvarez, V.A.; Vázquez, A. Thermal Degradation of Cellulose Derivatives/Starch Blends and Sisal Fibre Biocomposites. Polym. Degrad. Stab. 2004, 84(1): 13-21; https://doi.org/10.1016/j.polymdegradstab.2003.09.003.
  • [36] Kongkaew, N.; Pruksakit, W.; Patumsawad, S. Thermogravimetric Kinetic Analysis of the Pyrolysis of Rice Straw. Energy Procedia 2015, 79: 663-670; https://doi.org/10.1016/j.egypro.2015.11.552.
  • [37] Pawar, A.; Panwar, N.L.; Jain, S.; Jain, N.K.; Gupta, T. Thermal Degradation of Coconut Husk Waste Biomass under non-Isothermal Condition. Biomass Convers. Biorefin. 2021, 13: 7613-7622; https://doi.org/10.1007/s13399-021-01657-w.
  • [38] Brachi, P.; Miccio, F.; Miccio, M.; Ruoppolo, G. Isoconversional Kinetic Analysis of Olive Pomace Decomposition under Torrefaction Operating Conditions. Fuel Process. Technol. 2015, 130: 147-154; https://doi.org/10.1016/j.fuproc.2014.09.043.
  • [39] Parr, R.G.; Yang, W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106(14): 4049-4050; https://doi.org/10.1021/ja00326a036.
  • [40] Alizadeh, M.; Bayat, Y. Influence of Functional Groups in Chemical Reactivity and Optoelectronic Properties of Novel Glycidyl Nitrate Copolymers (GNCOP): A DFT Study. J. Mol. Model. 2023, 29(3): paper 82; https://doi.org/10.1007/s00894-023-05480-0.
  • [41] Pakiari, A.H.; Eshghi, F. Geometric and Electronic Structures of Vanadium subnano Clusters, Vn (n = 2-5), and Their Adsorption Complexes with CO and O₂ Ligands: A DFT-NBO Study. Phys. Chem. Res. 2017, 5(3): 601-615; https://doi.org/10.22036/pcr.2017.80624.1364.
  • [42] Kruse, H.; Grimme, S. A Geometrical Correction for the inter- and intra-Molecular Basis Set Superposition Error in Hartree-Fock and Density Functional Theory Calculations for Large Systems. J. Chem. Phys. 2012, 136(15): paper 154101; https://doi.org/10.1063/1.3700154.
  • [43] Benjamin, I.; Gber, T.E.; Louis, H.; Ntui, T.N.; Oyo-Ita, E.I.; Unimuke, T.O.; Edim, M.M.; Adeyinka, A.S. Modelling of Aminothiophene-Carbonitrile Derivatives as Potential Drug Candidates for Hepatitis B and C. Iran. J. Sci. Technol., Trans. A: Sci. 2022, 46(5): 1399-1412; https://doi.org/10.1007/s40995-022-01355-w.
  • [44] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. Gaussian 09. Revision D. 01 [CP]. Gaussian. Inc., Wallingford/Pittsburgh, USA, 2013, https://cir.nii.ac.jp/crid/1380567187536707208.
  • [45] Dong, Q.; Li, H.; Liu, X.; Huang, C. Thermal and Rheological Properties of PGN, PNIMMO and P (GN/NIMMO) Synthesized via Mesylate Precursors. Propellants Explos. Pyrotech. 2018, 43(3): 294-299; https://doi.org/10.1002/prep.201700201.
  • [46] Fodor, C.; Domján, A.; Iván, B. Unprecedented Scissor Effect of Macromolecular cross-Linkers on the Glass Transition Temperature of poly (N-Vinylimidazole), Crystallinity Suppression of poly (Tetrahydrofuran) and Molecular Mobility by Solid State NMR in poly (N-Vinylimidazole)-l-poly (tetrahydrofuran) Conetworks. Polym. Chem. 2013, 4(13): 3714-3724; https://doi.org/10.1039/C3PY00299C.
  • [47] Satoh, K.; Kamigaito, M.; Sawamoto, M. Direct Living Cationic Polymerization of p-Hydroxystyrene with Boron Trifluoride Etherate in the Presence of Water. Macromol. 2000, 33(15): 5405-5410. https://doi.org/10.1021/ma991959d.
  • [48] Okada, M.; Kamachi, M.; Harada, A. Preparation and Characterization of Inclusion Complexes Between Methylated Cyclodextrins and poly (Tetrahydrofuran). Macromol. 1999, 32(21): 7202-7207; https://doi.org/10.1021/ma990806n.
  • [49] Dou, J.; Xu, M.; Tan, B.; Lu, X.; Mo, H.; Wang, B.; Liu, N. Research Progress of Nitrate Ester Binders. FirePhysChem. 2023, 3(1): 54-77, https://doi.org/10.1016/j.fpc.2022.09.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdfa4cf5-352c-4d0c-87e8-44c71e54358f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.