PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simplified analysis of the effect of nano-asperities on particle-bubble interactions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interactions of gas bubbles with particles having rough and heterogeneous surfaces are much more complex than the commonly used DLVO – based models predict. The effects of surface roughness on flotation and particle – bubble interactions have been reported many times in the past, although a clear understanding of their origins has been lacking. To explain differences in interactions for spherical hydrophobic particles, a theoretical analysis of the interaction potential was carried out for a model rough particle interacting with a bubble surface in an electrolyte solution in this study. The attractive hydrophobic interaction potential was added to repulsive retarded van der Waals and repulsive electrical double layer interaction potentials. The rough microscopic particles were modeled as spheres decorated with nano-sized asperities. Parameters that reflect common flotation separation systems were selected for testing this theoretical model and computation of the energy barrier applicable to particle – flat bubble surface interactions. It was found that hydrophobic asperities with a height of only several nanometers can reduce the repulsive interaction energy by an order of magnitude. Theoretical analysis also reveals that surface coverage of microscopic particles by nano-sized asperities is important as well.
Rocznik
Strony
10--18
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Michigan Technological University, Department of Materials Science and Engineering, 1400 Townsend Dr. Houghton, MI 49931, USA
Bibliografia
  • AHMED, M. M., 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. International Journal of Mineral Processing, 94 (3-4), 180-191.
  • ANFRUNS, J. F., KITCHENER., J. A., 1977. Rate of capture of small particles in flotation. IMM Trans. Sect. C Miner. Process. Extra. Metall., 86, 9-15.
  • DONALDSON, S. H., ROYNE, JR., A., KRISTIANSEN, K., RAPP, M. V. , DAS, S., GEBBIE, M. A., LEE, D. W., STOCK, P., VALTINER, M., ISRAELACHVILI, J., 2015. Developing a general interaction potential for hydrophobic and hydrophilic interactions. Langmuir, 31, 2051-2064.
  • DRELICH, J., 2001. Contact angles measured at mineral surfaces covered with adsorbed collector layers. Minerals & Metallurgical Processing, 18 (1), 31-37.
  • DRELICH, J., BOWEN, P. K., 2015. Hydrophobic nano-asperities in control of energy barrier during particle-surface interactions. Surface Innovations, 3 (3), 164-171.
  • DRELICH, J., WANG, Y. U., 2011. Charge heterogeneity of surfaces: Mapping and effects on surface forces. Advances in Colloid and Interface Science, 165 (2), 91-101.
  • DRELICH, J., YIN, X. H., 2010. Mapping charge-mosaic surfaces in electrolyte solutions using surface charge microscopy. Applied Surface Science, 256 (17), 5381-5387.
  • DUCKER, W. A., PASHLEY, R. M., NINHAM, B. W., 1989. The flotation of quartz using a double-chained cationic surfactant. Journal of Colloid and Interface Science, 128 (1), 66-75.
  • FARROKHPAY, S., 2011. The significance of froth stability in mineral flotation - A review. Advances in Colloid and Interface Science, 166 (1-2), 1-7.
  • FENG, D., ALDRICH, C., 2000. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding. International Journal of Mineral Processing, 60 (2), 115-129.
  • FUERSTENAU, M. C., SOMASUNDARAN, P., 2003. Flotation. In Principles of Mineral Processing, edited by M. C. Fuerstenau and K. N. Han. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc. (SME), 245-306.
  • GUVEN, O., CELIK, M. S., 2016. Interplay of Particle Shape and Surface Roughness to Reach Maximum Flotation Efficiencies Depending on Collector Concentration. Mineral Processing and Extractive Metallurgy Review, 37 (6), 412-417.
  • GUVEN, O., CELIK, M. S., DRELICH, J. W., 2015a. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier. Minerals Engineering, 79, 125-132.
  • GUVEN, O., OZDEMIR, O., KARAAGACLIOGLU, I. E., CELIK, M. S., 2015b. Surface morphologies and floatability of sand-blasted quartz particles. Minerals Engineering, 70, 1-7.
  • HASSAS, B. V., CALISKAN, H., GUVEN, O., KARAKAS, F., CINAR, M., CELIK, M. S., 2016. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 88-99.
  • JAMESON, G. J., 2010. Advances in Fine and Coarse Particle Flotation. Canadian Metallurgical Quarterly, 49 (4), 325-330.
  • KRASOWSKA, M., MALYSA K.. 2007. Kinetics of bubble collision and attachment to hydrophobic solids: I. Effect of surface roughness. International Journal of Mineral Processing, 81 (4), 205-216.
  • LASKOWSKI, J. S., XU, Z., YOON, R. H., 1991. Energy barrier in particle-to-bubble attachmet and its effect on flotation kinetics. Paper read at XVIIth International Mineral Processing Congress, at Dresden, Germany, Sept. 23-28, 1991.
  • MIETTINEN, T., RALSTON, J., FORNASIERO, D., 2010. The limits of fine particle flotation. Minerals Engineering, 23 (5), 420-437.
  • REZAI, B., RAHIMI, M., ASLANI, M. R., ESLAMIAN, A., DEHGHANI, F., 2010. Relationship between surface roughness of minerals and their flotation kinetics. In Proceedings of the XI International Mineral Processing and Technology Congress, 232-238.
  • SHARMA, A., RUCKENSTEIN, E., 1989. Dewetting of solids by the formation of holes in macroscopic liquid-films. Journal of Colloid and Interface Science, 133 (2), 358-368.
  • SHARMA, A., RUCKENSTEIN, E., 1990. Energetic criteria for the breakup of liquid-films on nonwetting solid surfaces. Journal of Colloid and Interface Science, 137 (2), 433-445.
  • SURESH, L., WALZ, J. Y., 1996. Effect of surface roughness on the interaction energy between a colloidal sphere and a flat plate. Journal of Colloid and Interface Science, 183 (1), 199-213.
  • TAO, D. 2004. Role of bubble size in flotation of coarse and fine particles - A review. Separation Science and Technology, 39 (4), 741-760.
  • YANG, J. W., DUAN, J. M., FORNASIERO, D., RALSTON, J., 2003. Very small bubble formation at the solid-water interface. Journal of Physical Chemistry B, 107 (25), 6139-6147.
  • YEKELER, M., ULUSOY, U., HICYILMAZ, C., 2004. Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability. Powder Technology, 140 (1-2), 68-78.
  • ZAWALA, J., KOSIOR, D., MALYSA, K., 2014. Air-assisted bubble immobilization at hydrophilic porous surface. Surface Innovations, 2 (4), 235-244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbf3b2c9-f0fe-4e07-8710-96587c320ac7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.