PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Peculiarities of metals uptake by the biofuel crop Miscanthus x giganteus were explored during plant growth at soil from the military site (Sliač, Slovakia). The experiment was carried out in greenhouse during two vegetation seasons. Research soil was predominantly elevated in Fe and Ti, while other metals (As, Cu, Mn, Sr, Zn and Zr) were presented at order of magnitude lower concentrations. No inhibition of plant growth was observed. The calculated Bioconcentration Factor showed that levels of metals’ accumulation by plant roots, stems and leaves were independent of metals’ concentrations in the soil. The accumulation of metals by stems and leaves was much lower than by roots. As, Zr, Ti were almost not accumulated by stems and leaves during both seasons; accumulation of Cu, Fe, Mn, Zn and Sr was not essential which confi rmed that biomass of M. x giganteus might be processed for the energy purpose.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
  • Jan Evangelista Purkyně University in Ústí nad Labem, Department of Technical Sciences, Králova Výšina 3132/7, Ústí nad Labem, Czech Republic
  • Kansas State University, Department of Chemical Engineering, 1005 Durland Hall, Manhattan, Kansas, USA
autor
  • Jan Evangelista Purkyně University in Ústí nad Labem, Department of Technical Sciences, Králova Výšina 3132/7, Ústí nad Labem, Czech Republic
  • National University “Lvivska Polytechnika”, Department of Analytical Chemistry, Sv.Yura Square 9, Lviv, Ukraine
autor
  • Jan Evangelista Purkyně University in Ústí nad Labem, Department of Informatization and Geoinformatization, Králova Výšina 3132/7, Ústí nad Labem, Czech Republic
autor
  • Kansas State University, Department of Biochemistry and Molecular Biophysics, 141 Charmers Hall, Manhattan, Kansas, USA
  • National University of Life and the Environmental Sciences, Department of Plant Protection, Gerojiv Oboronu 13, Kyiv, Ukraine
  • Kansas State University, Department of Agronomy, Throckmorton Hall, 1712 Clafl in Road, Manhattan, Kansas, USA
Bibliografia
  • 1. Karthikeyan, R., Davis, L.C., Erickson, L.E., Al-Khatib, K., Kulakow, P.A., Barnes, P.L., Hutchinson, S.L. & Nurzhanova, A.A. (2004). Potential for plant-based remediation of pesticidecontaminated soil and water using nontarget plants such as trees, shrubs, and grasses. Critical Reviews in Plant Sciences. 3(1), 91–101. DOI: 10.1080/07352680490273518.
  • 2. Davis, L.C., Erickson, L.E., Narayanan, M. & Zhang, Q. (2003). Modeling and design of phytoremediation, In S.C.McCutcheon&J. L.Schnoor (Eds), Phytoremediation: Transformation and Control of Contaminants (рр. 661–694). Science and Technology&A Wiley-Intersciences Series of Texts and Monographs. DOI: 10.1002/047127304X.ch21.
  • 3. Li, G.Y., Hu, N., Ding, D.X., Zheng, J.F., Liu, Y.L., Wang, Y.D. & Nie, X.Q. (2011). Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in south china. Bulletin of Environmental Contamination and Toxicology. 86(6), 646–652. DOI: 10.1007/s00128-011-0291-2.
  • 4. Prasad, M.N.V. (2015). Bioremediation and bioeconomy (1st ed.). Elsevier Inc.
  • 5. Maestri, E. & Marmiroli N. (2011). Transgenic plants for phytoremediation. International Journal of Phytoremediation. 13(1), 264–279. DOI: 10.1080/15226514.2011.568549.
  • 6. Witters, N., Mendelsohn, R.O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. & Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass & Bioenergy. 39, 454–469. DOI: 10.1016/j.biombioe.2011.08.016.
  • 7. Witters, N., Van Slycken, S., Ruttens, A., Adriaensen, K., Meers, E., Meiresonne, L., Tack, F.M., Thewys, T., Laes, E. & Vangronsveld, J. (2009). Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: A sustainability assessment. BioEnergy Research. 2(3), 144–152. DOI: 10.1007/s12155-009-9042-1.
  • 8. Gomes, H.I. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews. 1(1), 59–66. DOI: 10.1080/09593330.2012.696715.
  • 9. Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., Fontaine, J., Muchembled, J., Sahraoui, A.L.H., Fourrier, H. & Donay, F. (2015). Metal accumulation and shoot yield of miscanthus x giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture Ecosystems & Environment. 213, 61–71. DOI: 10.1016/j.agee.2015.07.023.
  • 10. Brosse, N., Dufour, A., Meng, X.Z., Sun, Q.N. & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts & Biorefi ning-Biofpr. 6(5), 580–598. DOI: 10.1002/bbb.1353.
  • 11. Beale, C.V., Bint, D.A. & Long, S.P. (1996). Leaf photosynthesis in the c-4-grass miscanthus x giganteus, growing in the cool temperate climate of southern england. J. Exp. Bot. 47(2), 267–273. DOI: 10.1093/jxb/47.2.267.
  • 12. Christian, D., Bullard, M. & Wilkins, C. (1997). The agronomy of some herbaceous crops grown for energy in southern england. Aspects Appl. Biol. 49, 41–51.
  • 13. Gopalakrishnan, G., Negri, M.C. & Snyder, S.W. (2011). A novel framework to classify marginal land for sustainable biomass feedstock production. J. Environ. Qual. 40(5), 1593–1600. DOI: 10.2134/jeq2010.0539.
  • 14. Nsanganwimana, F., Pourrut, B., Mench, M. & Douay, F. (2014). Suitability of miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage. 143, 123–134. DOI: 10.1016/j.jenvman.2014.04.027.
  • 15. Pidlisnyuk, V., Stefanovska, T., Lewis, E.E., Erickson, L.E. & Davis, L.C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Criti. Rev. Plant Sci. 33(1), 1–19. DOI: 10.1080/07352689.2014.847616.
  • 16. Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M. & Falla, J. (2012). Assessment of miscanthus x giganteus for rhizoremediation of long term pah contaminated soils. Appl. Soil Ecol. 62, 42–49. DOI: 10.1016/j.apsoil.2012.07.009.
  • 17. Kocon, A. & Matyka, M. (2012). Phytoextractive potential of miscanthus giganteus and sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. J. Food, Agri. & Environ. 10(2), 1253–1256.
  • 18. Hodkinson, T., Renvoize, S. & Chase, M. (1997). Systematics of miscanthus. Aspects Appl. Biol. 49, 189–198.
  • 19. Kahle, P., Beuch, S., Boelcke, B., Leinweber, P. & Schulten, H.R. (2001). Cropping of miscanthus in central europe: Biomass production and infl uence on nutrients and soil organic matter. Eur. J. Agron. 15(3), 171–184. DOI: 10.1016/S1161-0301(01)00102-2.
  • 20. Speller, C.S. (1993). The potential for growing biomass crops for fuel on surplus land in the UK. Outlook Agricu.22(1), 23–29.
  • 21. Huisman, W., Venturi, P. & Molenaar, J. (1997). Costs of supply chains of miscanthus giganteus. Industrial Crops and Products. 6(3–4), 353–366. DOI: 10.1016/S0926-6690(97)00026-5.
  • 22. Semere, I.T. & Slater, F.M. (2007). Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canarygrass (Phalaris arundinacea) fi elds. Biomass and Bioenergy. 31(1), 30–39. DOI: 10.1016/j.biombioe.2006.07.002.
  • 23. Hedde, M., Van Oort, F., Boudon, E., Abonnel, F. & Lamy, I. (2013a). Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass and Bioenergy. 55, 122–129. DOI: 10.1016/j.biombioe.2013.01.016.
  • 24. Hedde, M., van Oort, F., Renouf, E., Thénard, J. & Lamy, I. (2013b) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl. Soul Ecol. 66, 29–39. DOI: 10.1016/j.apsoil.2013.01.012.
  • 25. Al Souki, K.S., Louvel, B., Douay, F. & Pourrut, B. (2017). Assessment of Miscanthus x giganteus capacity to restore thefunctionality of metal-contaminated soils: Ex situ experiment. Appl. Soil Ecol. 115(7), 44–52. DOI: 10.1016/j.apsoil.2017.03.002.
  • 26. Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J.P., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y.C., Cosentino, S. & Cracroft-Eley, W., et al. (2017). Progress in upscaling miscanthus biomass production for the european bio-economy with seed-based hybrids. Global Change Biol. Bioen. 9, 6–17. DOI: 10.1111/gcbb.12357.
  • 27. Pidlisnyuk, V., Erickson, L., Kharchenko, S. & Stefanovska, T. (2014). Sustainable land management: Growing miscanthus in soils contaminated with heavy metals. J. Environ. Protec. 5(8), 723–730. DOI: 10.4236/jep.2014.58073.
  • 28. Pidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P. & Erickson, L. (2016). Preliminary results on growing second generation biofuel crop miscanthus x giganteus at the polluted military site in Ukraine. Nova Biotechnol. Chim. 15(1), 77–84. DOI: 10.1515/nbec-2016-0008.
  • 29. Stefanovska, T., Pidlisnyk, V. & Tomashkin, J. (2015). Growing second generation biofuel plant Miscanthus x giganteus at military soils contaminated with heavy metals. Bioenergy. 1, 50–53. (in Ukrainian).
  • 30. Andersen, J. (2000, February) Management of contaminated sites and land in Central and Eastern Europe. Retrieved June 2, 2017, from http://www.statensnet.dk/pligtarkiv/fremvis.pl
  • 31. Lindberg, A.L., Goessler, W., Gurzau, E., Koppova, K., Rudnai, P., Kumar, R., Fletcher, T., Leonardi, G., Slotova, K. & Gheorghiu, E., et al. (2006). Arsenic exposure in Hungary, Romania and Slovakia. J. Environ. Monit. 8(1), 203–208. DOI: 10.1039/B513206A.
  • 32. Leonardi, G., Vahter, M., Clemens, F., Goessler, W., Gurzau, E., Hemminki, K., Hough, R., Koppova, K., Kumar, R. & Rudnai, P., et al. (2012). Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ. Health Perspect. 120(5), 721–726. DOI: 10.1289/ehp.1103534.
  • 33. Ceřveny, J. (2017). Experience on sanitation of contaminated places at the sites after Soviet Army. At: Materials of the workshop in the fi eld of contaminated sites, Banska Bystrica, Slovakia. Available at: http://old.sazp.sk/public/index/go.php?id=2229HOME (in Slovakian).
  • 34. State Standard of Ukraine. (2001). Ukrainian standard: Soil quality. Preliminary preparation of samples for physicalchemical analysis. DSTU ISO 11464-2001. Kyiv, Ukraine.
  • 35. State Standard of Ukraine. (2007). National standard of Ukraine. Quality of soil. The method for determination of the nitrate and ammonium nitrogen. DSTU 4729-2007. Kyiv, Ukraine.
  • 36. State Standard of Ukraine. (2004). National Standard of Ukraine. Quality of soil. The method for determination of organic matter. DSTU 4289-2004. Kyiv, Ukraine.
  • 37. Mehlich, A. (1978). New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun. Soil Sci. Plant Anal. 9(6), 477–492. DOI: 10.1080/00103627809366824.
  • 38. United States Environmental Protection Agency. (2007). United States Standard: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. SW-846 Test Method 6200–2007. Washington DC.
  • 39. State Standard of Ukraine. (2007). General requirements for the competence of testing and calibration laboratories. DSTU ISO/IEC 17025. Kyiv, Ukraine.
  • 40. Altman, D.G. (1990). Practical statistics for medical research. London: Chapman & Hall.
  • 41. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1): 9pp. http://palaeoelectronica. org/2001_1/past/issue1_01.htm.
  • 42. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13.Essington, M.E. (2015). Soil and water chemistry: An integrative approach (2nd ed.). CRC press: Taylot & Francis Group.
  • 43. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b7aada5-7265-482d-b377-7b986539a3ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.