PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A window based method to reduce the end-effect in Empirical Mode Decomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Empirical Mode Decomposition technique (EMD) is a recent development in non-stationary and non-linear data analysis. It is an algorithm which adaptively decomposes the signal in the sum of Intrinsic Mode Functions (IMFs) from which the instantaneous frequency can be easily computed. EMD has proven its effectiveness but is still affected from various problems. One of these is the “end-effect”, a phenomenon occurring at the start and at the end of the data due to the splines fitting on which the EMD is based. Various techniques have been tried to overcome the end-effect, like different data extension or mirroring procedures at the data boundary. In this paper we made use of the IMFs orthogonality property to apply a symmetrical window to the data before EMD for end-effect reduction. Subsequently the IMFs are post-processed to compensate for data alteration due to windowing. The simulations show that IMFs obtained with this method are of better quality near the data boundaries while remaining almost identical to classical EMD ones.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 10 poz., wykr.
Twórcy
autor
  • Department of Science and Engineering Methods, University of Modena and Reggio Emilia, 2, Amendola street, Morselli Building, 42122 Reggio Emilia, Italy
  • Department of Science and Engineering Methods, Universityity of Modena and Reggio Emilia, Reggio Emilia, Itally
autor
  • Department of Science and Engineering Methods, Universityity of Modena and Reggio Emilia, Reggio Emilia, Itally
Bibliografia
  • [1]. Y. Deng, W. Wang, C. Qian, Z. Wang, D. Dai, Boundary-processing-technique in EMD method and Hilbert transform. Chinese Science Bulletin Vol. 46, No. 1 (2001).
  • [2]. P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank. Signal Processing Letters, IEEE, 11(2) (2004) 112-114.
  • [3]. Q. Gai, X.-J. Ma, H.-Y. Zhang, Y.-K. Zou, New method for processing end effect in local wave method. J. Dalian Univ. Technol. 42 (1) (2001) 115-117.
  • [4]. N. E. Huang, M. Wu, S. R. Long, S. P. Shen, W. Qu, P. Gloersen, K. L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. A, 459 (2003)2317-2345.
  • [5]. N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. London, Ser. A 454 (1998) 903-995.
  • [6]. N. E. Huang, Z. Wu, G. Wang , X. Chen, F. Qiao, On intrinsic mode function, Adv. in Adaptive Data Analysis. Vol. 2, No. 3 (2010) 277-293.
  • [7]. Y. S. Lee, S. Tsakirtzis, A. F. Vakakis, L. A. Bergman, D.M. McFarlan, Physics-based foundation for empirical mode decomposition. Adv. in Adaptve Data Analysis, Vol. 47, No. 12 (2009) 2938-2963.
  • [8]. D. Lin, Z. Guo, F. An, F. Zeng, Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mechanical Systems and Signal Processing 31 (2012) 13-28.
  • [9]. D. Ren, S. Yang, Z. Wu, G. Yan, Evaluation of the EMD end effect and a window based method to improve EMD. International Technology and Innovation Conference, November 6-7 (2006) China.
  • [10]. Q. Wu, S. D. Riemenschneider, Boundary extension and stop criteria for empirical mode decomposition. Adv. in Adaptive Data Analysis, Vol. 2, No. 2 (2010) 157-169.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d39f0cf-7b5c-4938-95da-7d4597c8c86c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.